| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfinf | GIF version | ||
| Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| nfinf.1 | ⊢ Ⅎ𝑥𝐴 |
| nfinf.2 | ⊢ Ⅎ𝑥𝐵 |
| nfinf.3 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfinf | ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 7120 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
| 2 | nfinf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfinf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfinf.3 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 4 | nfcnv 4878 | . . 3 ⊢ Ⅎ𝑥◡𝑅 |
| 6 | 2, 3, 5 | nfsup 7127 | . 2 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, ◡𝑅) |
| 7 | 1, 6 | nfcxfr 2349 | 1 ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2339 ◡ccnv 4695 supcsup 7117 infcinf 7118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-cnv 4704 df-sup 7119 df-inf 7120 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |