| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfinf | GIF version | ||
| Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) | 
| Ref | Expression | 
|---|---|
| nfinf.1 | ⊢ Ⅎ𝑥𝐴 | 
| nfinf.2 | ⊢ Ⅎ𝑥𝐵 | 
| nfinf.3 | ⊢ Ⅎ𝑥𝑅 | 
| Ref | Expression | 
|---|---|
| nfinf | ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-inf 7051 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
| 2 | nfinf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfinf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfinf.3 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 4 | nfcnv 4845 | . . 3 ⊢ Ⅎ𝑥◡𝑅 | 
| 6 | 2, 3, 5 | nfsup 7058 | . 2 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, ◡𝑅) | 
| 7 | 1, 6 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) | 
| Colors of variables: wff set class | 
| Syntax hints: Ⅎwnfc 2326 ◡ccnv 4662 supcsup 7048 infcinf 7049 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-cnv 4671 df-sup 7050 df-inf 7051 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |