ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfinf GIF version

Theorem nfinf 6994
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
nfinf.1 𝑥𝐴
nfinf.2 𝑥𝐵
nfinf.3 𝑥𝑅
Assertion
Ref Expression
nfinf 𝑥inf(𝐴, 𝐵, 𝑅)

Proof of Theorem nfinf
StepHypRef Expression
1 df-inf 6962 . 2 inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
2 nfinf.1 . . 3 𝑥𝐴
3 nfinf.2 . . 3 𝑥𝐵
4 nfinf.3 . . . 4 𝑥𝑅
54nfcnv 4790 . . 3 𝑥𝑅
62, 3, 5nfsup 6969 . 2 𝑥sup(𝐴, 𝐵, 𝑅)
71, 6nfcxfr 2309 1 𝑥inf(𝐴, 𝐵, 𝑅)
Colors of variables: wff set class
Syntax hints:  wnfc 2299  ccnv 4610  supcsup 6959  infcinf 6960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-cnv 4619  df-sup 6961  df-inf 6962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator