| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfinf | GIF version | ||
| Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| nfinf.1 | ⊢ Ⅎ𝑥𝐴 |
| nfinf.2 | ⊢ Ⅎ𝑥𝐵 |
| nfinf.3 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfinf | ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 7094 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
| 2 | nfinf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfinf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfinf.3 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 4 | nfcnv 4861 | . . 3 ⊢ Ⅎ𝑥◡𝑅 |
| 6 | 2, 3, 5 | nfsup 7101 | . 2 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, ◡𝑅) |
| 7 | 1, 6 | nfcxfr 2346 | 1 ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2336 ◡ccnv 4678 supcsup 7091 infcinf 7092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-cnv 4687 df-sup 7093 df-inf 7094 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |