ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq123d GIF version

Theorem infeq123d 7171
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
infeq123d.a (𝜑𝐴 = 𝐷)
infeq123d.b (𝜑𝐵 = 𝐸)
infeq123d.c (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
infeq123d (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹))

Proof of Theorem infeq123d
StepHypRef Expression
1 infeq123d.a . . 3 (𝜑𝐴 = 𝐷)
2 infeq123d.b . . 3 (𝜑𝐵 = 𝐸)
3 infeq123d.c . . . 4 (𝜑𝐶 = 𝐹)
43cnveqd 4895 . . 3 (𝜑𝐶 = 𝐹)
51, 2, 4supeq123d 7146 . 2 (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))
6 df-inf 7140 . 2 inf(𝐴, 𝐵, 𝐶) = sup(𝐴, 𝐵, 𝐶)
7 df-inf 7140 . 2 inf(𝐷, 𝐸, 𝐹) = sup(𝐷, 𝐸, 𝐹)
85, 6, 73eqtr4g 2287 1 (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  ccnv 4715  supcsup 7137  infcinf 7138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-in 3203  df-ss 3210  df-uni 3888  df-br 4083  df-opab 4145  df-cnv 4724  df-sup 7139  df-inf 7140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator