| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infeq123d | GIF version | ||
| Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq123d.a | ⊢ (𝜑 → 𝐴 = 𝐷) |
| infeq123d.b | ⊢ (𝜑 → 𝐵 = 𝐸) |
| infeq123d.c | ⊢ (𝜑 → 𝐶 = 𝐹) |
| Ref | Expression |
|---|---|
| infeq123d | ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq123d.a | . . 3 ⊢ (𝜑 → 𝐴 = 𝐷) | |
| 2 | infeq123d.b | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
| 3 | infeq123d.c | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐹) | |
| 4 | 3 | cnveqd 4895 | . . 3 ⊢ (𝜑 → ◡𝐶 = ◡𝐹) |
| 5 | 1, 2, 4 | supeq123d 7146 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡𝐶) = sup(𝐷, 𝐸, ◡𝐹)) |
| 6 | df-inf 7140 | . 2 ⊢ inf(𝐴, 𝐵, 𝐶) = sup(𝐴, 𝐵, ◡𝐶) | |
| 7 | df-inf 7140 | . 2 ⊢ inf(𝐷, 𝐸, 𝐹) = sup(𝐷, 𝐸, ◡𝐹) | |
| 8 | 5, 6, 7 | 3eqtr4g 2287 | 1 ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ◡ccnv 4715 supcsup 7137 infcinf 7138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-in 3203 df-ss 3210 df-uni 3888 df-br 4083 df-opab 4145 df-cnv 4724 df-sup 7139 df-inf 7140 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |