ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq123d GIF version

Theorem infeq123d 6618
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
infeq123d.a (𝜑𝐴 = 𝐷)
infeq123d.b (𝜑𝐵 = 𝐸)
infeq123d.c (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
infeq123d (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹))

Proof of Theorem infeq123d
StepHypRef Expression
1 infeq123d.a . . 3 (𝜑𝐴 = 𝐷)
2 infeq123d.b . . 3 (𝜑𝐵 = 𝐸)
3 infeq123d.c . . . 4 (𝜑𝐶 = 𝐹)
43cnveqd 4570 . . 3 (𝜑𝐶 = 𝐹)
51, 2, 4supeq123d 6593 . 2 (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))
6 df-inf 6587 . 2 inf(𝐴, 𝐵, 𝐶) = sup(𝐴, 𝐵, 𝐶)
7 df-inf 6587 . 2 inf(𝐷, 𝐸, 𝐹) = sup(𝐷, 𝐸, 𝐹)
85, 6, 73eqtr4g 2140 1 (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  ccnv 4400  supcsup 6584  infcinf 6585
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-in 2990  df-ss 2997  df-uni 3628  df-br 3812  df-opab 3866  df-cnv 4409  df-sup 6586  df-inf 6587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator