Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infeq123d | GIF version |
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq123d.a | ⊢ (𝜑 → 𝐴 = 𝐷) |
infeq123d.b | ⊢ (𝜑 → 𝐵 = 𝐸) |
infeq123d.c | ⊢ (𝜑 → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
infeq123d | ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq123d.a | . . 3 ⊢ (𝜑 → 𝐴 = 𝐷) | |
2 | infeq123d.b | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
3 | infeq123d.c | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐹) | |
4 | 3 | cnveqd 4787 | . . 3 ⊢ (𝜑 → ◡𝐶 = ◡𝐹) |
5 | 1, 2, 4 | supeq123d 6968 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡𝐶) = sup(𝐷, 𝐸, ◡𝐹)) |
6 | df-inf 6962 | . 2 ⊢ inf(𝐴, 𝐵, 𝐶) = sup(𝐴, 𝐵, ◡𝐶) | |
7 | df-inf 6962 | . 2 ⊢ inf(𝐷, 𝐸, 𝐹) = sup(𝐷, 𝐸, ◡𝐹) | |
8 | 5, 6, 7 | 3eqtr4g 2228 | 1 ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ◡ccnv 4610 supcsup 6959 infcinf 6960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-in 3127 df-ss 3134 df-uni 3797 df-br 3990 df-opab 4051 df-cnv 4619 df-sup 6961 df-inf 6962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |