| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inflbti | GIF version | ||
| Description: An infimum is a lower bound. See also infclti 7098 and infglbti 7100. (Contributed by Jim Kingdon, 18-Dec-2021.) |
| Ref | Expression |
|---|---|
| infclti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
| infclti.ex | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| Ref | Expression |
|---|---|
| inflbti | ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infclti.ti | . . . . . 6 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
| 2 | 1 | cnvti 7094 | . . . . 5 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
| 3 | infclti.ex | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
| 4 | 3 | cnvinfex 7093 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
| 5 | 2, 4 | supubti 7074 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
| 6 | 5 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → ¬ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶) |
| 7 | df-inf 7060 | . . . . . 6 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 8 | 7 | a1i 9 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅)) |
| 9 | 8 | breq2d 4046 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅inf(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅sup(𝐵, 𝐴, ◡𝑅))) |
| 10 | 2, 4 | supclti 7073 | . . . . 5 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
| 11 | brcnvg 4848 | . . . . . 6 ⊢ ((sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶 ↔ 𝐶𝑅sup(𝐵, 𝐴, ◡𝑅))) | |
| 12 | 11 | bicomd 141 | . . . . 5 ⊢ ((sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
| 13 | 10, 12 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
| 14 | 9, 13 | bitrd 188 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅inf(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
| 15 | 6, 14 | mtbird 674 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅)) |
| 16 | 15 | ex 115 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 class class class wbr 4034 ◡ccnv 4663 supcsup 7057 infcinf 7058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-cnv 4672 df-iota 5220 df-riota 5880 df-sup 7059 df-inf 7060 |
| This theorem is referenced by: infregelbex 9689 zssinfcl 10339 infssuzledc 10341 |
| Copyright terms: Public domain | W3C validator |