![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infeq3 | GIF version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq3 | ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 4673 | . . 3 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
2 | supeq3 6829 | . . 3 ⊢ (◡𝑅 = ◡𝑆 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐵, ◡𝑆)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝑅 = 𝑆 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐵, ◡𝑆)) |
4 | df-inf 6824 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
5 | df-inf 6824 | . 2 ⊢ inf(𝐴, 𝐵, 𝑆) = sup(𝐴, 𝐵, ◡𝑆) | |
6 | 3, 4, 5 | 3eqtr4g 2172 | 1 ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 ◡ccnv 4498 supcsup 6821 infcinf 6822 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-rab 2399 df-in 3043 df-ss 3050 df-uni 3703 df-br 3896 df-opab 3950 df-cnv 4507 df-sup 6823 df-inf 6824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |