| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infeq3 | GIF version | ||
| Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq3 | ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 4852 | . . 3 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
| 2 | supeq3 7092 | . . 3 ⊢ (◡𝑅 = ◡𝑆 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐵, ◡𝑆)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑅 = 𝑆 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐵, ◡𝑆)) |
| 4 | df-inf 7087 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
| 5 | df-inf 7087 | . 2 ⊢ inf(𝐴, 𝐵, 𝑆) = sup(𝐴, 𝐵, ◡𝑆) | |
| 6 | 3, 4, 5 | 3eqtr4g 2263 | 1 ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ◡ccnv 4674 supcsup 7084 infcinf 7085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-in 3172 df-ss 3179 df-uni 3851 df-br 4045 df-opab 4106 df-cnv 4683 df-sup 7086 df-inf 7087 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |