Proof of Theorem infvalti
Step | Hyp | Ref
| Expression |
1 | | df-inf 6950 |
. 2
⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) |
2 | | eqinfti.ti |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
3 | 2 | cnvti 6984 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
4 | | infvalti.ex |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
5 | 4 | cnvinfex 6983 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
6 | 3, 5 | supval2ti 6960 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) |
7 | | vex 2729 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
8 | | vex 2729 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
9 | 7, 8 | brcnv 4787 |
. . . . . . . 8
⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
10 | 9 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
11 | 10 | notbid 657 |
. . . . . 6
⊢ (𝜑 → (¬ 𝑥◡𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)) |
12 | 11 | ralbidv 2466 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
13 | 8, 7 | brcnv 4787 |
. . . . . . . 8
⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
14 | 13 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
15 | | vex 2729 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
16 | 8, 15 | brcnv 4787 |
. . . . . . . . 9
⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
17 | 16 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦)) |
18 | 17 | rexbidv 2467 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
19 | 14, 18 | imbi12d 233 |
. . . . . 6
⊢ (𝜑 → ((𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
20 | 19 | ralbidv 2466 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
21 | 12, 20 | anbi12d 465 |
. . . 4
⊢ (𝜑 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
22 | 21 | riotabidv 5800 |
. . 3
⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
23 | 6, 22 | eqtrd 2198 |
. 2
⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
24 | 1, 23 | syl5eq 2211 |
1
⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |