ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsnti GIF version

Theorem infsnti 7096
Description: The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
Hypotheses
Ref Expression
infsnti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
infsnti.b (𝜑𝐵𝐴)
Assertion
Ref Expression
infsnti (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵)
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝐵,𝑣   𝑢,𝑅,𝑣   𝜑,𝑢,𝑣

Proof of Theorem infsnti
StepHypRef Expression
1 df-inf 7051 . 2 inf({𝐵}, 𝐴, 𝑅) = sup({𝐵}, 𝐴, 𝑅)
2 infsnti.ti . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
32cnvti 7085 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
4 infsnti.b . . 3 (𝜑𝐵𝐴)
53, 4supsnti 7071 . 2 (𝜑 → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
61, 5eqtrid 2241 1 (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {csn 3622   class class class wbr 4033  ccnv 4662  supcsup 7048  infcinf 7049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-cnv 4671  df-iota 5219  df-riota 5877  df-sup 7050  df-inf 7051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator