Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infsnti | GIF version |
Description: The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.) |
Ref | Expression |
---|---|
infsnti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
infsnti.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
infsnti | ⊢ (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6962 | . 2 ⊢ inf({𝐵}, 𝐴, 𝑅) = sup({𝐵}, 𝐴, ◡𝑅) | |
2 | infsnti.ti | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
3 | 2 | cnvti 6996 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
4 | infsnti.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
5 | 3, 4 | supsnti 6982 | . 2 ⊢ (𝜑 → sup({𝐵}, 𝐴, ◡𝑅) = 𝐵) |
6 | 1, 5 | eqtrid 2215 | 1 ⊢ (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {csn 3583 class class class wbr 3989 ◡ccnv 4610 supcsup 6959 infcinf 6960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-cnv 4619 df-iota 5160 df-riota 5809 df-sup 6961 df-inf 6962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |