ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsnti GIF version

Theorem infsnti 7153
Description: The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
Hypotheses
Ref Expression
infsnti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
infsnti.b (𝜑𝐵𝐴)
Assertion
Ref Expression
infsnti (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵)
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝐵,𝑣   𝑢,𝑅,𝑣   𝜑,𝑢,𝑣

Proof of Theorem infsnti
StepHypRef Expression
1 df-inf 7108 . 2 inf({𝐵}, 𝐴, 𝑅) = sup({𝐵}, 𝐴, 𝑅)
2 infsnti.ti . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
32cnvti 7142 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
4 infsnti.b . . 3 (𝜑𝐵𝐴)
53, 4supsnti 7128 . 2 (𝜑 → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
61, 5eqtrid 2251 1 (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {csn 3638   class class class wbr 4054  ccnv 4687  supcsup 7105  infcinf 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-cnv 4696  df-iota 5246  df-riota 5917  df-sup 7107  df-inf 7108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator