![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infsnti | GIF version |
Description: The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.) |
Ref | Expression |
---|---|
infsnti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
infsnti.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
infsnti | ⊢ (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6986 | . 2 ⊢ inf({𝐵}, 𝐴, 𝑅) = sup({𝐵}, 𝐴, ◡𝑅) | |
2 | infsnti.ti | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
3 | 2 | cnvti 7020 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
4 | infsnti.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
5 | 3, 4 | supsnti 7006 | . 2 ⊢ (𝜑 → sup({𝐵}, 𝐴, ◡𝑅) = 𝐵) |
6 | 1, 5 | eqtrid 2222 | 1 ⊢ (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {csn 3594 class class class wbr 4005 ◡ccnv 4627 supcsup 6983 infcinf 6984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-cnv 4636 df-iota 5180 df-riota 5833 df-sup 6985 df-inf 6986 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |