ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsnti GIF version

Theorem infsnti 7193
Description: The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
Hypotheses
Ref Expression
infsnti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
infsnti.b (𝜑𝐵𝐴)
Assertion
Ref Expression
infsnti (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵)
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝐵,𝑣   𝑢,𝑅,𝑣   𝜑,𝑢,𝑣

Proof of Theorem infsnti
StepHypRef Expression
1 df-inf 7148 . 2 inf({𝐵}, 𝐴, 𝑅) = sup({𝐵}, 𝐴, 𝑅)
2 infsnti.ti . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
32cnvti 7182 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
4 infsnti.b . . 3 (𝜑𝐵𝐴)
53, 4supsnti 7168 . 2 (𝜑 → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
61, 5eqtrid 2274 1 (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {csn 3666   class class class wbr 4082  ccnv 4717  supcsup 7145  infcinf 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-cnv 4726  df-iota 5277  df-riota 5953  df-sup 7147  df-inf 7148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator