| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infsnti | GIF version | ||
| Description: The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| infsnti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
| infsnti.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| infsnti | ⊢ (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 7148 | . 2 ⊢ inf({𝐵}, 𝐴, 𝑅) = sup({𝐵}, 𝐴, ◡𝑅) | |
| 2 | infsnti.ti | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
| 3 | 2 | cnvti 7182 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
| 4 | infsnti.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 5 | 3, 4 | supsnti 7168 | . 2 ⊢ (𝜑 → sup({𝐵}, 𝐴, ◡𝑅) = 𝐵) |
| 6 | 1, 5 | eqtrid 2274 | 1 ⊢ (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {csn 3666 class class class wbr 4082 ◡ccnv 4717 supcsup 7145 infcinf 7146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-cnv 4726 df-iota 5277 df-riota 5953 df-sup 7147 df-inf 7148 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |