ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infrenegsupex GIF version

Theorem infrenegsupex 9662
Description: The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
infrenegsupex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
infrenegsupex.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
infrenegsupex (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infrenegsupex
Dummy variables 𝑓 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8101 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 277 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 infrenegsupex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
42, 3infclti 7084 . . . 4 (𝜑 → inf(𝐴, ℝ, < ) ∈ ℝ)
54recnd 8050 . . 3 (𝜑 → inf(𝐴, ℝ, < ) ∈ ℂ)
65negnegd 8323 . 2 (𝜑 → --inf(𝐴, ℝ, < ) = inf(𝐴, ℝ, < ))
7 negeq 8214 . . . . . . . . 9 (𝑤 = 𝑧 → -𝑤 = -𝑧)
87cbvmptv 4126 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑧 ∈ ℝ ↦ -𝑧)
98mptpreima 5160 . . . . . . 7 ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = {𝑧 ∈ ℝ ∣ -𝑧𝐴}
10 eqid 2193 . . . . . . . . . 10 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)
1110negiso 8976 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ∧ (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤))
1211simpri 113 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)
1312imaeq1i 5003 . . . . . . 7 ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴)
149, 13eqtr3i 2216 . . . . . 6 {𝑧 ∈ ℝ ∣ -𝑧𝐴} = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴)
1514supeq1i 7049 . . . . 5 sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < )
1611simpli 111 . . . . . . . . 9 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
17 isocnv 5855 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) → (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
1816, 17ax-mp 5 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
19 isoeq1 5845 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤) → ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ↔ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)))
2012, 19ax-mp 5 . . . . . . . 8 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ↔ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
2118, 20mpbi 145 . . . . . . 7 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
2221a1i 9 . . . . . 6 (𝜑 → (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
23 infrenegsupex.ss . . . . . 6 (𝜑𝐴 ⊆ ℝ)
243cnvinfex 7079 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
252cnvti 7080 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2622, 23, 24, 25supisoti 7071 . . . . 5 (𝜑 → sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )))
2715, 26eqtrid 2238 . . . 4 (𝜑 → sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )))
28 df-inf 7046 . . . . . . 7 inf(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )
2928eqcomi 2197 . . . . . 6 sup(𝐴, ℝ, < ) = inf(𝐴, ℝ, < )
3029fveq2i 5558 . . . . 5 ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < ))
31 eqidd 2194 . . . . . 6 (𝜑 → (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤))
32 negeq 8214 . . . . . . 7 (𝑤 = inf(𝐴, ℝ, < ) → -𝑤 = -inf(𝐴, ℝ, < ))
3332adantl 277 . . . . . 6 ((𝜑𝑤 = inf(𝐴, ℝ, < )) → -𝑤 = -inf(𝐴, ℝ, < ))
345negcld 8319 . . . . . 6 (𝜑 → -inf(𝐴, ℝ, < ) ∈ ℂ)
3531, 33, 4, 34fvmptd 5639 . . . . 5 (𝜑 → ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
3630, 35eqtrid 2238 . . . 4 (𝜑 → ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
3727, 36eqtr2d 2227 . . 3 (𝜑 → -inf(𝐴, ℝ, < ) = sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
3837negeqd 8216 . 2 (𝜑 → --inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
396, 38eqtr3d 2228 1 (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  {crab 2476  wss 3154   class class class wbr 4030  cmpt 4091  ccnv 4659  cima 4663  cfv 5255   Isom wiso 5256  supcsup 7043  infcinf 7044  cc 7872  cr 7873   < clt 8056  -cneg 8193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-sub 8194  df-neg 8195
This theorem is referenced by:  supminfex  9665  minmax  11376  infssuzcldc  12091
  Copyright terms: Public domain W3C validator