Step | Hyp | Ref
| Expression |
1 | | lttri3 7978 |
. . . . . 6
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
2 | 1 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
3 | | infrenegsupex.ex |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
4 | 2, 3 | infclti 6988 |
. . . 4
⊢ (𝜑 → inf(𝐴, ℝ, < ) ∈
ℝ) |
5 | 4 | recnd 7927 |
. . 3
⊢ (𝜑 → inf(𝐴, ℝ, < ) ∈
ℂ) |
6 | 5 | negnegd 8200 |
. 2
⊢ (𝜑 → --inf(𝐴, ℝ, < ) = inf(𝐴, ℝ, < )) |
7 | | negeq 8091 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → -𝑤 = -𝑧) |
8 | 7 | cbvmptv 4078 |
. . . . . . . 8
⊢ (𝑤 ∈ ℝ ↦ -𝑤) = (𝑧 ∈ ℝ ↦ -𝑧) |
9 | 8 | mptpreima 5097 |
. . . . . . 7
⊢ (◡(𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} |
10 | | eqid 2165 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤) |
11 | 10 | negiso 8850 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , ◡ < (ℝ, ℝ) ∧ ◡(𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)) |
12 | 11 | simpri 112 |
. . . . . . . 8
⊢ ◡(𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤) |
13 | 12 | imaeq1i 4943 |
. . . . . . 7
⊢ (◡(𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) |
14 | 9, 13 | eqtr3i 2188 |
. . . . . 6
⊢ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) |
15 | 14 | supeq1i 6953 |
. . . . 5
⊢
sup({𝑧 ∈
ℝ ∣ -𝑧 ∈
𝐴}, ℝ, < ) =
sup(((𝑤 ∈ ℝ
↦ -𝑤) “ 𝐴), ℝ, <
) |
16 | 11 | simpli 110 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , ◡ < (ℝ, ℝ) |
17 | | isocnv 5779 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , ◡ < (ℝ, ℝ) → ◡(𝑤 ∈ ℝ ↦ -𝑤) Isom ◡ < , < (ℝ,
ℝ)) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
⊢ ◡(𝑤 ∈ ℝ ↦ -𝑤) Isom ◡ < , < (ℝ,
ℝ) |
19 | | isoeq1 5769 |
. . . . . . . . 9
⊢ (◡(𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤) → (◡(𝑤 ∈ ℝ ↦ -𝑤) Isom ◡ < , < (ℝ, ℝ) ↔
(𝑤 ∈ ℝ ↦
-𝑤) Isom ◡ < , < (ℝ,
ℝ))) |
20 | 12, 19 | ax-mp 5 |
. . . . . . . 8
⊢ (◡(𝑤 ∈ ℝ ↦ -𝑤) Isom ◡ < , < (ℝ, ℝ) ↔
(𝑤 ∈ ℝ ↦
-𝑤) Isom ◡ < , < (ℝ,
ℝ)) |
21 | 18, 20 | mpbi 144 |
. . . . . . 7
⊢ (𝑤 ∈ ℝ ↦ -𝑤) Isom ◡ < , < (ℝ,
ℝ) |
22 | 21 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ℝ ↦ -𝑤) Isom ◡ < , < (ℝ,
ℝ)) |
23 | | infrenegsupex.ss |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
24 | 3 | cnvinfex 6983 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥◡
< 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡
< 𝑧))) |
25 | 2 | cnvti 6984 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓◡
< 𝑔 ∧ ¬ 𝑔◡ < 𝑓))) |
26 | 22, 23, 24, 25 | supisoti 6975 |
. . . . 5
⊢ (𝜑 → sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, ◡ < ))) |
27 | 15, 26 | syl5eq 2211 |
. . . 4
⊢ (𝜑 → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, ◡ < ))) |
28 | | df-inf 6950 |
. . . . . . 7
⊢ inf(𝐴, ℝ, < ) = sup(𝐴, ℝ, ◡ < ) |
29 | 28 | eqcomi 2169 |
. . . . . 6
⊢ sup(𝐴, ℝ, ◡ < ) = inf(𝐴, ℝ, < ) |
30 | 29 | fveq2i 5489 |
. . . . 5
⊢ ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, ◡ < )) = ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < )) |
31 | | eqidd 2166 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)) |
32 | | negeq 8091 |
. . . . . . 7
⊢ (𝑤 = inf(𝐴, ℝ, < ) → -𝑤 = -inf(𝐴, ℝ, < )) |
33 | 32 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 = inf(𝐴, ℝ, < )) → -𝑤 = -inf(𝐴, ℝ, < )) |
34 | 5 | negcld 8196 |
. . . . . 6
⊢ (𝜑 → -inf(𝐴, ℝ, < ) ∈
ℂ) |
35 | 31, 33, 4, 34 | fvmptd 5567 |
. . . . 5
⊢ (𝜑 → ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < )) |
36 | 30, 35 | syl5eq 2211 |
. . . 4
⊢ (𝜑 → ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, ◡ < )) = -inf(𝐴, ℝ, < )) |
37 | 27, 36 | eqtr2d 2199 |
. . 3
⊢ (𝜑 → -inf(𝐴, ℝ, < ) = sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) |
38 | 37 | negeqd 8093 |
. 2
⊢ (𝜑 → --inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) |
39 | 6, 38 | eqtr3d 2200 |
1
⊢ (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) |