ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infrenegsupex GIF version

Theorem infrenegsupex 9181
Description: The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
infrenegsupex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
infrenegsupex.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
infrenegsupex (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infrenegsupex
Dummy variables 𝑓 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7662 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 272 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 infrenegsupex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
42, 3infclti 6798 . . . 4 (𝜑 → inf(𝐴, ℝ, < ) ∈ ℝ)
54recnd 7613 . . 3 (𝜑 → inf(𝐴, ℝ, < ) ∈ ℂ)
65negnegd 7881 . 2 (𝜑 → --inf(𝐴, ℝ, < ) = inf(𝐴, ℝ, < ))
7 negeq 7772 . . . . . . . . 9 (𝑤 = 𝑧 → -𝑤 = -𝑧)
87cbvmptv 3956 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑧 ∈ ℝ ↦ -𝑧)
98mptpreima 4958 . . . . . . 7 ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = {𝑧 ∈ ℝ ∣ -𝑧𝐴}
10 eqid 2095 . . . . . . . . . 10 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)
1110negiso 8513 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ∧ (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤))
1211simpri 112 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)
1312imaeq1i 4804 . . . . . . 7 ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴)
149, 13eqtr3i 2117 . . . . . 6 {𝑧 ∈ ℝ ∣ -𝑧𝐴} = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴)
1514supeq1i 6763 . . . . 5 sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < )
1611simpli 110 . . . . . . . . 9 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
17 isocnv 5628 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) → (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
1816, 17ax-mp 7 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
19 isoeq1 5618 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤) → ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ↔ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)))
2012, 19ax-mp 7 . . . . . . . 8 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ↔ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
2118, 20mpbi 144 . . . . . . 7 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
2221a1i 9 . . . . . 6 (𝜑 → (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
23 infrenegsupex.ss . . . . . 6 (𝜑𝐴 ⊆ ℝ)
243cnvinfex 6793 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
252cnvti 6794 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2622, 23, 24, 25supisoti 6785 . . . . 5 (𝜑 → sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )))
2715, 26syl5eq 2139 . . . 4 (𝜑 → sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )))
28 df-inf 6760 . . . . . . 7 inf(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )
2928eqcomi 2099 . . . . . 6 sup(𝐴, ℝ, < ) = inf(𝐴, ℝ, < )
3029fveq2i 5343 . . . . 5 ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < ))
31 eqidd 2096 . . . . . 6 (𝜑 → (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤))
32 negeq 7772 . . . . . . 7 (𝑤 = inf(𝐴, ℝ, < ) → -𝑤 = -inf(𝐴, ℝ, < ))
3332adantl 272 . . . . . 6 ((𝜑𝑤 = inf(𝐴, ℝ, < )) → -𝑤 = -inf(𝐴, ℝ, < ))
345negcld 7877 . . . . . 6 (𝜑 → -inf(𝐴, ℝ, < ) ∈ ℂ)
3531, 33, 4, 34fvmptd 5420 . . . . 5 (𝜑 → ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
3630, 35syl5eq 2139 . . . 4 (𝜑 → ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
3727, 36eqtr2d 2128 . . 3 (𝜑 → -inf(𝐴, ℝ, < ) = sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
3837negeqd 7774 . 2 (𝜑 → --inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
396, 38eqtr3d 2129 1 (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445  wral 2370  wrex 2371  {crab 2374  wss 3013   class class class wbr 3867  cmpt 3921  ccnv 4466  cima 4470  cfv 5049   Isom wiso 5050  supcsup 6757  infcinf 6758  cc 7445  cr 7446   < clt 7619  -cneg 7751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-apti 7557  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-isom 5058  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-sup 6759  df-inf 6760  df-pnf 7621  df-mnf 7622  df-ltxr 7624  df-sub 7752  df-neg 7753
This theorem is referenced by:  supminfex  9184  minmax  10792  infssuzcldc  11390
  Copyright terms: Public domain W3C validator