Step | Hyp | Ref
| Expression |
1 | | xrlttri3 9754 |
. . . . 5
⊢ ((𝑓 ∈ ℝ*
∧ 𝑔 ∈
ℝ*) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
2 | 1 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ* ∧ 𝑔 ∈ ℝ*))
→ (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
3 | | infxrnegsupex.ex |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
4 | 2, 3 | infclti 7000 |
. . 3
⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈
ℝ*) |
5 | | xnegneg 9790 |
. . 3
⊢
(inf(𝐴,
ℝ*, < ) ∈ ℝ* →
-𝑒-𝑒inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, <
)) |
6 | 4, 5 | syl 14 |
. 2
⊢ (𝜑 →
-𝑒-𝑒inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, <
)) |
7 | | xnegeq 9784 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → -𝑒𝑤 = -𝑒𝑧) |
8 | 7 | cbvmptv 4085 |
. . . . . . . 8
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) = (𝑧 ∈ ℝ* ↦
-𝑒𝑧) |
9 | 8 | mptpreima 5104 |
. . . . . . 7
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴) = {𝑧 ∈ ℝ*
∣ -𝑒𝑧 ∈ 𝐴} |
10 | | eqid 2170 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦
-𝑒𝑤) |
11 | 10 | xrnegiso 11225 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom < , ◡ < (ℝ*,
ℝ*) ∧ ◡(𝑤 ∈ ℝ*
↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦
-𝑒𝑤)) |
12 | 11 | simpri 112 |
. . . . . . . 8
⊢ ◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤) =
(𝑤 ∈
ℝ* ↦ -𝑒𝑤) |
13 | 12 | imaeq1i 4950 |
. . . . . . 7
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴) = ((𝑤 ∈ ℝ*
↦ -𝑒𝑤) “ 𝐴) |
14 | 9, 13 | eqtr3i 2193 |
. . . . . 6
⊢ {𝑧 ∈ ℝ*
∣ -𝑒𝑧 ∈ 𝐴} = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴) |
15 | 14 | supeq1i 6965 |
. . . . 5
⊢
sup({𝑧 ∈
ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, < ) = sup(((𝑤 ∈ ℝ*
↦ -𝑒𝑤) “ 𝐴), ℝ*, <
) |
16 | 11 | simpli 110 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom < , ◡ < (ℝ*,
ℝ*) |
17 | | isocnv 5790 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom < , ◡ < (ℝ*,
ℝ*) → ◡(𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom ◡ < , < (ℝ*,
ℝ*)) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
⊢ ◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*) |
19 | | isoeq1 5780 |
. . . . . . . . 9
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤) =
(𝑤 ∈
ℝ* ↦ -𝑒𝑤) → (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*) ↔ (𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*))) |
20 | 12, 19 | ax-mp 5 |
. . . . . . . 8
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*) ↔ (𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*)) |
21 | 18, 20 | mpbi 144 |
. . . . . . 7
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom ◡ < , < (ℝ*,
ℝ*) |
22 | 21 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*)) |
23 | | infxrnegsupex.ss |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
24 | 3 | cnvinfex 6995 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡
< 𝑦 ∧ ∀𝑦 ∈ ℝ*
(𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡
< 𝑧))) |
25 | 2 | cnvti 6996 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ* ∧ 𝑔 ∈ ℝ*))
→ (𝑓 = 𝑔 ↔ (¬ 𝑓◡ < 𝑔 ∧ ¬ 𝑔◡
< 𝑓))) |
26 | 22, 23, 24, 25 | supisoti 6987 |
. . . . 5
⊢ (𝜑 → sup(((𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴),
ℝ*, < ) = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < ))) |
27 | 15, 26 | eqtrid 2215 |
. . . 4
⊢ (𝜑 → sup({𝑧 ∈ ℝ* ∣
-𝑒𝑧
∈ 𝐴},
ℝ*, < ) = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < ))) |
28 | | df-inf 6962 |
. . . . . . 7
⊢ inf(𝐴, ℝ*, < ) =
sup(𝐴, ℝ*,
◡ < ) |
29 | 28 | eqcomi 2174 |
. . . . . 6
⊢ sup(𝐴, ℝ*, ◡ < ) = inf(𝐴, ℝ*, <
) |
30 | 29 | fveq2i 5499 |
. . . . 5
⊢ ((𝑤 ∈ ℝ*
↦ -𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < )) = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘inf(𝐴, ℝ*, <
)) |
31 | | eqidd 2171 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ℝ* ↦
-𝑒𝑤) =
(𝑤 ∈
ℝ* ↦ -𝑒𝑤)) |
32 | | xnegeq 9784 |
. . . . . . 7
⊢ (𝑤 = inf(𝐴, ℝ*, < ) →
-𝑒𝑤 =
-𝑒inf(𝐴,
ℝ*, < )) |
33 | 32 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 = inf(𝐴, ℝ*, < )) →
-𝑒𝑤 =
-𝑒inf(𝐴,
ℝ*, < )) |
34 | 4 | xnegcld 9812 |
. . . . . 6
⊢ (𝜑 →
-𝑒inf(𝐴,
ℝ*, < ) ∈ ℝ*) |
35 | 31, 33, 4, 34 | fvmptd 5577 |
. . . . 5
⊢ (𝜑 → ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘inf(𝐴, ℝ*, < )) =
-𝑒inf(𝐴,
ℝ*, < )) |
36 | 30, 35 | eqtrid 2215 |
. . . 4
⊢ (𝜑 → ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < )) = -𝑒inf(𝐴, ℝ*, <
)) |
37 | 27, 36 | eqtr2d 2204 |
. . 3
⊢ (𝜑 →
-𝑒inf(𝐴,
ℝ*, < ) = sup({𝑧 ∈ ℝ* ∣
-𝑒𝑧
∈ 𝐴},
ℝ*, < )) |
38 | | xnegeq 9784 |
. . 3
⊢
(-𝑒inf(𝐴, ℝ*, < ) = sup({𝑧 ∈ ℝ*
∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, < ) →
-𝑒-𝑒inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧
∈ ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, <
)) |
39 | 37, 38 | syl 14 |
. 2
⊢ (𝜑 →
-𝑒-𝑒inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧
∈ ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, <
)) |
40 | 6, 39 | eqtr3d 2205 |
1
⊢ (𝜑 → inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧
∈ ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, <
)) |