Step | Hyp | Ref
| Expression |
1 | | xrlttri3 9796 |
. . . . 5
β’ ((π β β*
β§ π β
β*) β (π = π β (Β¬ π < π β§ Β¬ π < π))) |
2 | 1 | adantl 277 |
. . . 4
β’ ((π β§ (π β β* β§ π β β*))
β (π = π β (Β¬ π < π β§ Β¬ π < π))) |
3 | | infxrnegsupex.ex |
. . . 4
β’ (π β βπ₯ β β* (βπ¦ β π΄ Β¬ π¦ < π₯ β§ βπ¦ β β* (π₯ < π¦ β βπ§ β π΄ π§ < π¦))) |
4 | 2, 3 | infclti 7021 |
. . 3
β’ (π β inf(π΄, β*, < ) β
β*) |
5 | | xnegneg 9832 |
. . 3
β’
(inf(π΄,
β*, < ) β β* β
-π-πinf(π΄, β*, < ) = inf(π΄, β*, <
)) |
6 | 4, 5 | syl 14 |
. 2
β’ (π β
-π-πinf(π΄, β*, < ) = inf(π΄, β*, <
)) |
7 | | xnegeq 9826 |
. . . . . . . . 9
β’ (π€ = π§ β -ππ€ = -ππ§) |
8 | 7 | cbvmptv 4099 |
. . . . . . . 8
β’ (π€ β β*
β¦ -ππ€) = (π§ β β* β¦
-ππ§) |
9 | 8 | mptpreima 5122 |
. . . . . . 7
β’ (β‘(π€ β β* β¦
-ππ€)
β π΄) = {π§ β β*
β£ -ππ§ β π΄} |
10 | | eqid 2177 |
. . . . . . . . . 10
β’ (π€ β β*
β¦ -ππ€) = (π€ β β* β¦
-ππ€) |
11 | 10 | xrnegiso 11269 |
. . . . . . . . 9
β’ ((π€ β β*
β¦ -ππ€) Isom < , β‘ < (β*,
β*) β§ β‘(π€ β β*
β¦ -ππ€) = (π€ β β* β¦
-ππ€)) |
12 | 11 | simpri 113 |
. . . . . . . 8
β’ β‘(π€ β β* β¦
-ππ€) =
(π€ β
β* β¦ -ππ€) |
13 | 12 | imaeq1i 4967 |
. . . . . . 7
β’ (β‘(π€ β β* β¦
-ππ€)
β π΄) = ((π€ β β*
β¦ -ππ€) β π΄) |
14 | 9, 13 | eqtr3i 2200 |
. . . . . 6
β’ {π§ β β*
β£ -ππ§ β π΄} = ((π€ β β* β¦
-ππ€)
β π΄) |
15 | 14 | supeq1i 6986 |
. . . . 5
β’
sup({π§ β
β* β£ -ππ§ β π΄}, β*, < ) = sup(((π€ β β*
β¦ -ππ€) β π΄), β*, <
) |
16 | 11 | simpli 111 |
. . . . . . . . 9
β’ (π€ β β*
β¦ -ππ€) Isom < , β‘ < (β*,
β*) |
17 | | isocnv 5811 |
. . . . . . . . 9
β’ ((π€ β β*
β¦ -ππ€) Isom < , β‘ < (β*,
β*) β β‘(π€ β β*
β¦ -ππ€) Isom β‘ < , < (β*,
β*)) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
β’ β‘(π€ β β* β¦
-ππ€)
Isom β‘ < , <
(β*, β*) |
19 | | isoeq1 5801 |
. . . . . . . . 9
β’ (β‘(π€ β β* β¦
-ππ€) =
(π€ β
β* β¦ -ππ€) β (β‘(π€ β β* β¦
-ππ€)
Isom β‘ < , <
(β*, β*) β (π€ β β* β¦
-ππ€)
Isom β‘ < , <
(β*, β*))) |
20 | 12, 19 | ax-mp 5 |
. . . . . . . 8
β’ (β‘(π€ β β* β¦
-ππ€)
Isom β‘ < , <
(β*, β*) β (π€ β β* β¦
-ππ€)
Isom β‘ < , <
(β*, β*)) |
21 | 18, 20 | mpbi 145 |
. . . . . . 7
β’ (π€ β β*
β¦ -ππ€) Isom β‘ < , < (β*,
β*) |
22 | 21 | a1i 9 |
. . . . . 6
β’ (π β (π€ β β* β¦
-ππ€)
Isom β‘ < , <
(β*, β*)) |
23 | | infxrnegsupex.ss |
. . . . . 6
β’ (π β π΄ β
β*) |
24 | 3 | cnvinfex 7016 |
. . . . . 6
β’ (π β βπ₯ β β* (βπ¦ β π΄ Β¬ π₯β‘
< π¦ β§ βπ¦ β β*
(π¦β‘ < π₯ β βπ§ β π΄ π¦β‘
< π§))) |
25 | 2 | cnvti 7017 |
. . . . . 6
β’ ((π β§ (π β β* β§ π β β*))
β (π = π β (Β¬ πβ‘ < π β§ Β¬ πβ‘
< π))) |
26 | 22, 23, 24, 25 | supisoti 7008 |
. . . . 5
β’ (π β sup(((π€ β β* β¦
-ππ€)
β π΄),
β*, < ) = ((π€ β β* β¦
-ππ€)βsup(π΄, β*, β‘ < ))) |
27 | 15, 26 | eqtrid 2222 |
. . . 4
β’ (π β sup({π§ β β* β£
-ππ§
β π΄},
β*, < ) = ((π€ β β* β¦
-ππ€)βsup(π΄, β*, β‘ < ))) |
28 | | df-inf 6983 |
. . . . . . 7
β’ inf(π΄, β*, < ) =
sup(π΄, β*,
β‘ < ) |
29 | 28 | eqcomi 2181 |
. . . . . 6
β’ sup(π΄, β*, β‘ < ) = inf(π΄, β*, <
) |
30 | 29 | fveq2i 5518 |
. . . . 5
β’ ((π€ β β*
β¦ -ππ€)βsup(π΄, β*, β‘ < )) = ((π€ β β* β¦
-ππ€)βinf(π΄, β*, <
)) |
31 | | eqidd 2178 |
. . . . . 6
β’ (π β (π€ β β* β¦
-ππ€) =
(π€ β
β* β¦ -ππ€)) |
32 | | xnegeq 9826 |
. . . . . . 7
β’ (π€ = inf(π΄, β*, < ) β
-ππ€ =
-πinf(π΄,
β*, < )) |
33 | 32 | adantl 277 |
. . . . . 6
β’ ((π β§ π€ = inf(π΄, β*, < )) β
-ππ€ =
-πinf(π΄,
β*, < )) |
34 | 4 | xnegcld 9854 |
. . . . . 6
β’ (π β
-πinf(π΄,
β*, < ) β β*) |
35 | 31, 33, 4, 34 | fvmptd 5597 |
. . . . 5
β’ (π β ((π€ β β* β¦
-ππ€)βinf(π΄, β*, < )) =
-πinf(π΄,
β*, < )) |
36 | 30, 35 | eqtrid 2222 |
. . . 4
β’ (π β ((π€ β β* β¦
-ππ€)βsup(π΄, β*, β‘ < )) = -πinf(π΄, β*, <
)) |
37 | 27, 36 | eqtr2d 2211 |
. . 3
β’ (π β
-πinf(π΄,
β*, < ) = sup({π§ β β* β£
-ππ§
β π΄},
β*, < )) |
38 | | xnegeq 9826 |
. . 3
β’
(-πinf(π΄, β*, < ) = sup({π§ β β*
β£ -ππ§ β π΄}, β*, < ) β
-π-πinf(π΄, β*, < ) =
-πsup({π§
β β* β£ -ππ§ β π΄}, β*, <
)) |
39 | 37, 38 | syl 14 |
. 2
β’ (π β
-π-πinf(π΄, β*, < ) =
-πsup({π§
β β* β£ -ππ§ β π΄}, β*, <
)) |
40 | 6, 39 | eqtr3d 2212 |
1
β’ (π β inf(π΄, β*, < ) =
-πsup({π§
β β* β£ -ππ§ β π΄}, β*, <
)) |