| Step | Hyp | Ref
 | Expression | 
| 1 |   | xrlttri3 9872 | 
. . . . 5
⊢ ((𝑓 ∈ ℝ*
∧ 𝑔 ∈
ℝ*) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | 
| 2 | 1 | adantl 277 | 
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ* ∧ 𝑔 ∈ ℝ*))
→ (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | 
| 3 |   | infxrnegsupex.ex | 
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | 
| 4 | 2, 3 | infclti 7089 | 
. . 3
⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈
ℝ*) | 
| 5 |   | xnegneg 9908 | 
. . 3
⊢
(inf(𝐴,
ℝ*, < ) ∈ ℝ* →
-𝑒-𝑒inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, <
)) | 
| 6 | 4, 5 | syl 14 | 
. 2
⊢ (𝜑 →
-𝑒-𝑒inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, <
)) | 
| 7 |   | xnegeq 9902 | 
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → -𝑒𝑤 = -𝑒𝑧) | 
| 8 | 7 | cbvmptv 4129 | 
. . . . . . . 8
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) = (𝑧 ∈ ℝ* ↦
-𝑒𝑧) | 
| 9 | 8 | mptpreima 5163 | 
. . . . . . 7
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴) = {𝑧 ∈ ℝ*
∣ -𝑒𝑧 ∈ 𝐴} | 
| 10 |   | eqid 2196 | 
. . . . . . . . . 10
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦
-𝑒𝑤) | 
| 11 | 10 | xrnegiso 11427 | 
. . . . . . . . 9
⊢ ((𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom < , ◡ < (ℝ*,
ℝ*) ∧ ◡(𝑤 ∈ ℝ*
↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦
-𝑒𝑤)) | 
| 12 | 11 | simpri 113 | 
. . . . . . . 8
⊢ ◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤) =
(𝑤 ∈
ℝ* ↦ -𝑒𝑤) | 
| 13 | 12 | imaeq1i 5006 | 
. . . . . . 7
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴) = ((𝑤 ∈ ℝ*
↦ -𝑒𝑤) “ 𝐴) | 
| 14 | 9, 13 | eqtr3i 2219 | 
. . . . . 6
⊢ {𝑧 ∈ ℝ*
∣ -𝑒𝑧 ∈ 𝐴} = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴) | 
| 15 | 14 | supeq1i 7054 | 
. . . . 5
⊢
sup({𝑧 ∈
ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, < ) = sup(((𝑤 ∈ ℝ*
↦ -𝑒𝑤) “ 𝐴), ℝ*, <
) | 
| 16 | 11 | simpli 111 | 
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom < , ◡ < (ℝ*,
ℝ*) | 
| 17 |   | isocnv 5858 | 
. . . . . . . . 9
⊢ ((𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom < , ◡ < (ℝ*,
ℝ*) → ◡(𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom ◡ < , < (ℝ*,
ℝ*)) | 
| 18 | 16, 17 | ax-mp 5 | 
. . . . . . . 8
⊢ ◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*) | 
| 19 |   | isoeq1 5848 | 
. . . . . . . . 9
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤) =
(𝑤 ∈
ℝ* ↦ -𝑒𝑤) → (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*) ↔ (𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*))) | 
| 20 | 12, 19 | ax-mp 5 | 
. . . . . . . 8
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*) ↔ (𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*)) | 
| 21 | 18, 20 | mpbi 145 | 
. . . . . . 7
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom ◡ < , < (ℝ*,
ℝ*) | 
| 22 | 21 | a1i 9 | 
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*)) | 
| 23 |   | infxrnegsupex.ss | 
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆
ℝ*) | 
| 24 | 3 | cnvinfex 7084 | 
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡
< 𝑦 ∧ ∀𝑦 ∈ ℝ*
(𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡
< 𝑧))) | 
| 25 | 2 | cnvti 7085 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ* ∧ 𝑔 ∈ ℝ*))
→ (𝑓 = 𝑔 ↔ (¬ 𝑓◡ < 𝑔 ∧ ¬ 𝑔◡
< 𝑓))) | 
| 26 | 22, 23, 24, 25 | supisoti 7076 | 
. . . . 5
⊢ (𝜑 → sup(((𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴),
ℝ*, < ) = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < ))) | 
| 27 | 15, 26 | eqtrid 2241 | 
. . . 4
⊢ (𝜑 → sup({𝑧 ∈ ℝ* ∣
-𝑒𝑧
∈ 𝐴},
ℝ*, < ) = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < ))) | 
| 28 |   | df-inf 7051 | 
. . . . . . 7
⊢ inf(𝐴, ℝ*, < ) =
sup(𝐴, ℝ*,
◡ < ) | 
| 29 | 28 | eqcomi 2200 | 
. . . . . 6
⊢ sup(𝐴, ℝ*, ◡ < ) = inf(𝐴, ℝ*, <
) | 
| 30 | 29 | fveq2i 5561 | 
. . . . 5
⊢ ((𝑤 ∈ ℝ*
↦ -𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < )) = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘inf(𝐴, ℝ*, <
)) | 
| 31 |   | eqidd 2197 | 
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ℝ* ↦
-𝑒𝑤) =
(𝑤 ∈
ℝ* ↦ -𝑒𝑤)) | 
| 32 |   | xnegeq 9902 | 
. . . . . . 7
⊢ (𝑤 = inf(𝐴, ℝ*, < ) →
-𝑒𝑤 =
-𝑒inf(𝐴,
ℝ*, < )) | 
| 33 | 32 | adantl 277 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 = inf(𝐴, ℝ*, < )) →
-𝑒𝑤 =
-𝑒inf(𝐴,
ℝ*, < )) | 
| 34 | 4 | xnegcld 9930 | 
. . . . . 6
⊢ (𝜑 →
-𝑒inf(𝐴,
ℝ*, < ) ∈ ℝ*) | 
| 35 | 31, 33, 4, 34 | fvmptd 5642 | 
. . . . 5
⊢ (𝜑 → ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘inf(𝐴, ℝ*, < )) =
-𝑒inf(𝐴,
ℝ*, < )) | 
| 36 | 30, 35 | eqtrid 2241 | 
. . . 4
⊢ (𝜑 → ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < )) = -𝑒inf(𝐴, ℝ*, <
)) | 
| 37 | 27, 36 | eqtr2d 2230 | 
. . 3
⊢ (𝜑 →
-𝑒inf(𝐴,
ℝ*, < ) = sup({𝑧 ∈ ℝ* ∣
-𝑒𝑧
∈ 𝐴},
ℝ*, < )) | 
| 38 |   | xnegeq 9902 | 
. . 3
⊢
(-𝑒inf(𝐴, ℝ*, < ) = sup({𝑧 ∈ ℝ*
∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, < ) →
-𝑒-𝑒inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧
∈ ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, <
)) | 
| 39 | 37, 38 | syl 14 | 
. 2
⊢ (𝜑 →
-𝑒-𝑒inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧
∈ ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, <
)) | 
| 40 | 6, 39 | eqtr3d 2231 | 
1
⊢ (𝜑 → inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧
∈ ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, <
)) |