ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infxrnegsupex GIF version

Theorem infxrnegsupex 11428
Description: The infimum of a set of extended reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
Hypotheses
Ref Expression
infxrnegsupex.ex (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
infxrnegsupex.ss (𝜑𝐴 ⊆ ℝ*)
Assertion
Ref Expression
infxrnegsupex (𝜑 → inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infxrnegsupex
Dummy variables 𝑓 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9872 . . . . 5 ((𝑓 ∈ ℝ*𝑔 ∈ ℝ*) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 277 . . . 4 ((𝜑 ∧ (𝑓 ∈ ℝ*𝑔 ∈ ℝ*)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 infxrnegsupex.ex . . . 4 (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
42, 3infclti 7089 . . 3 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
5 xnegneg 9908 . . 3 (inf(𝐴, ℝ*, < ) ∈ ℝ* → -𝑒-𝑒inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, < ))
64, 5syl 14 . 2 (𝜑 → -𝑒-𝑒inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, < ))
7 xnegeq 9902 . . . . . . . . 9 (𝑤 = 𝑧 → -𝑒𝑤 = -𝑒𝑧)
87cbvmptv 4129 . . . . . . . 8 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑧 ∈ ℝ* ↦ -𝑒𝑧)
98mptpreima 5163 . . . . . . 7 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴) = {𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}
10 eqid 2196 . . . . . . . . . 10 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦ -𝑒𝑤)
1110xrnegiso 11427 . . . . . . . . 9 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*) ∧ (𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦ -𝑒𝑤))
1211simpri 113 . . . . . . . 8 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦ -𝑒𝑤)
1312imaeq1i 5006 . . . . . . 7 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴) = ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴)
149, 13eqtr3i 2219 . . . . . 6 {𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴} = ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴)
1514supeq1i 7054 . . . . 5 sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ) = sup(((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴), ℝ*, < )
1611simpli 111 . . . . . . . . 9 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*)
17 isocnv 5858 . . . . . . . . 9 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*) → (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*))
1816, 17ax-mp 5 . . . . . . . 8 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*)
19 isoeq1 5848 . . . . . . . . 9 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦ -𝑒𝑤) → ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*) ↔ (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*)))
2012, 19ax-mp 5 . . . . . . . 8 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*) ↔ (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*))
2118, 20mpbi 145 . . . . . . 7 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*)
2221a1i 9 . . . . . 6 (𝜑 → (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*))
23 infxrnegsupex.ss . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
243cnvinfex 7084 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
252cnvti 7085 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ ℝ*𝑔 ∈ ℝ*)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2622, 23, 24, 25supisoti 7076 . . . . 5 (𝜑 → sup(((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴), ℝ*, < ) = ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘sup(𝐴, ℝ*, < )))
2715, 26eqtrid 2241 . . . 4 (𝜑 → sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ) = ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘sup(𝐴, ℝ*, < )))
28 df-inf 7051 . . . . . . 7 inf(𝐴, ℝ*, < ) = sup(𝐴, ℝ*, < )
2928eqcomi 2200 . . . . . 6 sup(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, < )
3029fveq2i 5561 . . . . 5 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘sup(𝐴, ℝ*, < )) = ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘inf(𝐴, ℝ*, < ))
31 eqidd 2197 . . . . . 6 (𝜑 → (𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦ -𝑒𝑤))
32 xnegeq 9902 . . . . . . 7 (𝑤 = inf(𝐴, ℝ*, < ) → -𝑒𝑤 = -𝑒inf(𝐴, ℝ*, < ))
3332adantl 277 . . . . . 6 ((𝜑𝑤 = inf(𝐴, ℝ*, < )) → -𝑒𝑤 = -𝑒inf(𝐴, ℝ*, < ))
344xnegcld 9930 . . . . . 6 (𝜑 → -𝑒inf(𝐴, ℝ*, < ) ∈ ℝ*)
3531, 33, 4, 34fvmptd 5642 . . . . 5 (𝜑 → ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘inf(𝐴, ℝ*, < )) = -𝑒inf(𝐴, ℝ*, < ))
3630, 35eqtrid 2241 . . . 4 (𝜑 → ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘sup(𝐴, ℝ*, < )) = -𝑒inf(𝐴, ℝ*, < ))
3727, 36eqtr2d 2230 . . 3 (𝜑 → -𝑒inf(𝐴, ℝ*, < ) = sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
38 xnegeq 9902 . . 3 (-𝑒inf(𝐴, ℝ*, < ) = sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ) → -𝑒-𝑒inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
3937, 38syl 14 . 2 (𝜑 → -𝑒-𝑒inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
406, 39eqtr3d 2231 1 (𝜑 → inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {crab 2479  wss 3157   class class class wbr 4033  cmpt 4094  ccnv 4662  cima 4666  cfv 5258   Isom wiso 5259  supcsup 7048  infcinf 7049  *cxr 8060   < clt 8061  -𝑒cxne 9844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-sub 8199  df-neg 8200  df-xneg 9847
This theorem is referenced by:  xrminmax  11430
  Copyright terms: Public domain W3C validator