| Step | Hyp | Ref
| Expression |
| 1 | | xrlttri3 9889 |
. . . . 5
⊢ ((𝑓 ∈ ℝ*
∧ 𝑔 ∈
ℝ*) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 2 | 1 | adantl 277 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ* ∧ 𝑔 ∈ ℝ*))
→ (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 3 | | infxrnegsupex.ex |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 4 | 2, 3 | infclti 7098 |
. . 3
⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈
ℝ*) |
| 5 | | xnegneg 9925 |
. . 3
⊢
(inf(𝐴,
ℝ*, < ) ∈ ℝ* →
-𝑒-𝑒inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, <
)) |
| 6 | 4, 5 | syl 14 |
. 2
⊢ (𝜑 →
-𝑒-𝑒inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, <
)) |
| 7 | | xnegeq 9919 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → -𝑒𝑤 = -𝑒𝑧) |
| 8 | 7 | cbvmptv 4130 |
. . . . . . . 8
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) = (𝑧 ∈ ℝ* ↦
-𝑒𝑧) |
| 9 | 8 | mptpreima 5164 |
. . . . . . 7
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴) = {𝑧 ∈ ℝ*
∣ -𝑒𝑧 ∈ 𝐴} |
| 10 | | eqid 2196 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦
-𝑒𝑤) |
| 11 | 10 | xrnegiso 11444 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom < , ◡ < (ℝ*,
ℝ*) ∧ ◡(𝑤 ∈ ℝ*
↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦
-𝑒𝑤)) |
| 12 | 11 | simpri 113 |
. . . . . . . 8
⊢ ◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤) =
(𝑤 ∈
ℝ* ↦ -𝑒𝑤) |
| 13 | 12 | imaeq1i 5007 |
. . . . . . 7
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴) = ((𝑤 ∈ ℝ*
↦ -𝑒𝑤) “ 𝐴) |
| 14 | 9, 13 | eqtr3i 2219 |
. . . . . 6
⊢ {𝑧 ∈ ℝ*
∣ -𝑒𝑧 ∈ 𝐴} = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴) |
| 15 | 14 | supeq1i 7063 |
. . . . 5
⊢
sup({𝑧 ∈
ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, < ) = sup(((𝑤 ∈ ℝ*
↦ -𝑒𝑤) “ 𝐴), ℝ*, <
) |
| 16 | 11 | simpli 111 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom < , ◡ < (ℝ*,
ℝ*) |
| 17 | | isocnv 5861 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom < , ◡ < (ℝ*,
ℝ*) → ◡(𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom ◡ < , < (ℝ*,
ℝ*)) |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
⊢ ◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*) |
| 19 | | isoeq1 5851 |
. . . . . . . . 9
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤) =
(𝑤 ∈
ℝ* ↦ -𝑒𝑤) → (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*) ↔ (𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*))) |
| 20 | 12, 19 | ax-mp 5 |
. . . . . . . 8
⊢ (◡(𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*) ↔ (𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*)) |
| 21 | 18, 20 | mpbi 145 |
. . . . . . 7
⊢ (𝑤 ∈ ℝ*
↦ -𝑒𝑤) Isom ◡ < , < (ℝ*,
ℝ*) |
| 22 | 21 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ℝ* ↦
-𝑒𝑤)
Isom ◡ < , <
(ℝ*, ℝ*)) |
| 23 | | infxrnegsupex.ss |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
| 24 | 3 | cnvinfex 7093 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡
< 𝑦 ∧ ∀𝑦 ∈ ℝ*
(𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡
< 𝑧))) |
| 25 | 2 | cnvti 7094 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ* ∧ 𝑔 ∈ ℝ*))
→ (𝑓 = 𝑔 ↔ (¬ 𝑓◡ < 𝑔 ∧ ¬ 𝑔◡
< 𝑓))) |
| 26 | 22, 23, 24, 25 | supisoti 7085 |
. . . . 5
⊢ (𝜑 → sup(((𝑤 ∈ ℝ* ↦
-𝑒𝑤)
“ 𝐴),
ℝ*, < ) = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < ))) |
| 27 | 15, 26 | eqtrid 2241 |
. . . 4
⊢ (𝜑 → sup({𝑧 ∈ ℝ* ∣
-𝑒𝑧
∈ 𝐴},
ℝ*, < ) = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < ))) |
| 28 | | df-inf 7060 |
. . . . . . 7
⊢ inf(𝐴, ℝ*, < ) =
sup(𝐴, ℝ*,
◡ < ) |
| 29 | 28 | eqcomi 2200 |
. . . . . 6
⊢ sup(𝐴, ℝ*, ◡ < ) = inf(𝐴, ℝ*, <
) |
| 30 | 29 | fveq2i 5564 |
. . . . 5
⊢ ((𝑤 ∈ ℝ*
↦ -𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < )) = ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘inf(𝐴, ℝ*, <
)) |
| 31 | | eqidd 2197 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ℝ* ↦
-𝑒𝑤) =
(𝑤 ∈
ℝ* ↦ -𝑒𝑤)) |
| 32 | | xnegeq 9919 |
. . . . . . 7
⊢ (𝑤 = inf(𝐴, ℝ*, < ) →
-𝑒𝑤 =
-𝑒inf(𝐴,
ℝ*, < )) |
| 33 | 32 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 = inf(𝐴, ℝ*, < )) →
-𝑒𝑤 =
-𝑒inf(𝐴,
ℝ*, < )) |
| 34 | 4 | xnegcld 9947 |
. . . . . 6
⊢ (𝜑 →
-𝑒inf(𝐴,
ℝ*, < ) ∈ ℝ*) |
| 35 | 31, 33, 4, 34 | fvmptd 5645 |
. . . . 5
⊢ (𝜑 → ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘inf(𝐴, ℝ*, < )) =
-𝑒inf(𝐴,
ℝ*, < )) |
| 36 | 30, 35 | eqtrid 2241 |
. . . 4
⊢ (𝜑 → ((𝑤 ∈ ℝ* ↦
-𝑒𝑤)‘sup(𝐴, ℝ*, ◡ < )) = -𝑒inf(𝐴, ℝ*, <
)) |
| 37 | 27, 36 | eqtr2d 2230 |
. . 3
⊢ (𝜑 →
-𝑒inf(𝐴,
ℝ*, < ) = sup({𝑧 ∈ ℝ* ∣
-𝑒𝑧
∈ 𝐴},
ℝ*, < )) |
| 38 | | xnegeq 9919 |
. . 3
⊢
(-𝑒inf(𝐴, ℝ*, < ) = sup({𝑧 ∈ ℝ*
∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, < ) →
-𝑒-𝑒inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧
∈ ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, <
)) |
| 39 | 37, 38 | syl 14 |
. 2
⊢ (𝜑 →
-𝑒-𝑒inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧
∈ ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, <
)) |
| 40 | 6, 39 | eqtr3d 2231 |
1
⊢ (𝜑 → inf(𝐴, ℝ*, < ) =
-𝑒sup({𝑧
∈ ℝ* ∣ -𝑒𝑧 ∈ 𝐴}, ℝ*, <
)) |