ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infxrnegsupex GIF version

Theorem infxrnegsupex 11493
Description: The infimum of a set of extended reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
Hypotheses
Ref Expression
infxrnegsupex.ex (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
infxrnegsupex.ss (𝜑𝐴 ⊆ ℝ*)
Assertion
Ref Expression
infxrnegsupex (𝜑 → inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infxrnegsupex
Dummy variables 𝑓 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9901 . . . . 5 ((𝑓 ∈ ℝ*𝑔 ∈ ℝ*) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 277 . . . 4 ((𝜑 ∧ (𝑓 ∈ ℝ*𝑔 ∈ ℝ*)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 infxrnegsupex.ex . . . 4 (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
42, 3infclti 7107 . . 3 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
5 xnegneg 9937 . . 3 (inf(𝐴, ℝ*, < ) ∈ ℝ* → -𝑒-𝑒inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, < ))
64, 5syl 14 . 2 (𝜑 → -𝑒-𝑒inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, < ))
7 xnegeq 9931 . . . . . . . . 9 (𝑤 = 𝑧 → -𝑒𝑤 = -𝑒𝑧)
87cbvmptv 4139 . . . . . . . 8 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑧 ∈ ℝ* ↦ -𝑒𝑧)
98mptpreima 5173 . . . . . . 7 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴) = {𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}
10 eqid 2204 . . . . . . . . . 10 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦ -𝑒𝑤)
1110xrnegiso 11492 . . . . . . . . 9 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*) ∧ (𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦ -𝑒𝑤))
1211simpri 113 . . . . . . . 8 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦ -𝑒𝑤)
1312imaeq1i 5016 . . . . . . 7 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴) = ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴)
149, 13eqtr3i 2227 . . . . . 6 {𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴} = ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴)
1514supeq1i 7072 . . . . 5 sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ) = sup(((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴), ℝ*, < )
1611simpli 111 . . . . . . . . 9 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*)
17 isocnv 5870 . . . . . . . . 9 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*) → (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*))
1816, 17ax-mp 5 . . . . . . . 8 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*)
19 isoeq1 5860 . . . . . . . . 9 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦ -𝑒𝑤) → ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*) ↔ (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*)))
2012, 19ax-mp 5 . . . . . . . 8 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*) ↔ (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*))
2118, 20mpbi 145 . . . . . . 7 (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*)
2221a1i 9 . . . . . 6 (𝜑 → (𝑤 ∈ ℝ* ↦ -𝑒𝑤) Isom < , < (ℝ*, ℝ*))
23 infxrnegsupex.ss . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
243cnvinfex 7102 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
252cnvti 7103 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ ℝ*𝑔 ∈ ℝ*)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2622, 23, 24, 25supisoti 7094 . . . . 5 (𝜑 → sup(((𝑤 ∈ ℝ* ↦ -𝑒𝑤) “ 𝐴), ℝ*, < ) = ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘sup(𝐴, ℝ*, < )))
2715, 26eqtrid 2249 . . . 4 (𝜑 → sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ) = ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘sup(𝐴, ℝ*, < )))
28 df-inf 7069 . . . . . . 7 inf(𝐴, ℝ*, < ) = sup(𝐴, ℝ*, < )
2928eqcomi 2208 . . . . . 6 sup(𝐴, ℝ*, < ) = inf(𝐴, ℝ*, < )
3029fveq2i 5573 . . . . 5 ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘sup(𝐴, ℝ*, < )) = ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘inf(𝐴, ℝ*, < ))
31 eqidd 2205 . . . . . 6 (𝜑 → (𝑤 ∈ ℝ* ↦ -𝑒𝑤) = (𝑤 ∈ ℝ* ↦ -𝑒𝑤))
32 xnegeq 9931 . . . . . . 7 (𝑤 = inf(𝐴, ℝ*, < ) → -𝑒𝑤 = -𝑒inf(𝐴, ℝ*, < ))
3332adantl 277 . . . . . 6 ((𝜑𝑤 = inf(𝐴, ℝ*, < )) → -𝑒𝑤 = -𝑒inf(𝐴, ℝ*, < ))
344xnegcld 9959 . . . . . 6 (𝜑 → -𝑒inf(𝐴, ℝ*, < ) ∈ ℝ*)
3531, 33, 4, 34fvmptd 5654 . . . . 5 (𝜑 → ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘inf(𝐴, ℝ*, < )) = -𝑒inf(𝐴, ℝ*, < ))
3630, 35eqtrid 2249 . . . 4 (𝜑 → ((𝑤 ∈ ℝ* ↦ -𝑒𝑤)‘sup(𝐴, ℝ*, < )) = -𝑒inf(𝐴, ℝ*, < ))
3727, 36eqtr2d 2238 . . 3 (𝜑 → -𝑒inf(𝐴, ℝ*, < ) = sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
38 xnegeq 9931 . . 3 (-𝑒inf(𝐴, ℝ*, < ) = sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ) → -𝑒-𝑒inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
3937, 38syl 14 . 2 (𝜑 → -𝑒-𝑒inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
406, 39eqtr3d 2239 1 (𝜑 → inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  wrex 2484  {crab 2487  wss 3165   class class class wbr 4043  cmpt 4104  ccnv 4672  cima 4676  cfv 5268   Isom wiso 5269  supcsup 7066  infcinf 7067  *cxr 8088   < clt 8089  -𝑒cxne 9873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-sub 8227  df-neg 8228  df-xneg 9876
This theorem is referenced by:  xrminmax  11495
  Copyright terms: Public domain W3C validator