ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infisoti GIF version

Theorem infisoti 6887
Description: Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
Hypotheses
Ref Expression
infisoti.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
infisoti.2 (𝜑𝐶𝐴)
infisoti.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
infisoti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Assertion
Ref Expression
infisoti (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑥,𝑦,𝑧   𝑢,𝐶,𝑣,𝑥,𝑦,𝑧   𝑢,𝐹,𝑣,𝑥,𝑦,𝑧   𝑢,𝑅,𝑣,𝑥,𝑦,𝑧   𝑢,𝑆,𝑣,𝑥,𝑦,𝑧   𝜑,𝑢,𝑣,𝑥,𝑦,𝑧

Proof of Theorem infisoti
StepHypRef Expression
1 infisoti.1 . . . 4 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isocnv2 5681 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐹 Isom 𝑅, 𝑆(𝐴, 𝐵))
31, 2sylib 121 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆(𝐴, 𝐵))
4 infisoti.2 . . 3 (𝜑𝐶𝐴)
5 infisoti.3 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
65cnvinfex 6873 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
7 infisoti.ti . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
87cnvti 6874 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
93, 4, 6, 8supisoti 6865 . 2 (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
10 df-inf 6840 . 2 inf((𝐹𝐶), 𝐵, 𝑆) = sup((𝐹𝐶), 𝐵, 𝑆)
11 df-inf 6840 . . 3 inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
1211fveq2i 5392 . 2 (𝐹‘inf(𝐶, 𝐴, 𝑅)) = (𝐹‘sup(𝐶, 𝐴, 𝑅))
139, 10, 123eqtr4g 2175 1 (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  wral 2393  wrex 2394  wss 3041   class class class wbr 3899  ccnv 4508  cima 4512  cfv 5093   Isom wiso 5094  supcsup 6837  infcinf 6838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-isom 5102  df-riota 5698  df-sup 6839  df-inf 6840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator