![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infisoti | GIF version |
Description: Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.) |
Ref | Expression |
---|---|
infisoti.1 | ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
infisoti.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
infisoti.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) |
infisoti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
Ref | Expression |
---|---|
infisoti | ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infisoti.1 | . . . 4 ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | isocnv2 5855 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐹 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) | |
3 | 1, 2 | sylib 122 | . . 3 ⊢ (𝜑 → 𝐹 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
4 | infisoti.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
5 | infisoti.3 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) | |
6 | 5 | cnvinfex 7077 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦◡𝑅𝑧))) |
7 | infisoti.ti | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
8 | 7 | cnvti 7078 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
9 | 3, 4, 6, 8 | supisoti 7069 | . 2 ⊢ (𝜑 → sup((𝐹 “ 𝐶), 𝐵, ◡𝑆) = (𝐹‘sup(𝐶, 𝐴, ◡𝑅))) |
10 | df-inf 7044 | . 2 ⊢ inf((𝐹 “ 𝐶), 𝐵, 𝑆) = sup((𝐹 “ 𝐶), 𝐵, ◡𝑆) | |
11 | df-inf 7044 | . . 3 ⊢ inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, ◡𝑅) | |
12 | 11 | fveq2i 5557 | . 2 ⊢ (𝐹‘inf(𝐶, 𝐴, 𝑅)) = (𝐹‘sup(𝐶, 𝐴, ◡𝑅)) |
13 | 9, 10, 12 | 3eqtr4g 2251 | 1 ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3153 class class class wbr 4029 ◡ccnv 4658 “ cima 4662 ‘cfv 5254 Isom wiso 5255 supcsup 7041 infcinf 7042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-sup 7043 df-inf 7044 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |