![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infisoti | GIF version |
Description: Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.) |
Ref | Expression |
---|---|
infisoti.1 | β’ (π β πΉ Isom π , π (π΄, π΅)) |
infisoti.2 | β’ (π β πΆ β π΄) |
infisoti.3 | β’ (π β βπ₯ β π΄ (βπ¦ β πΆ Β¬ π¦π π₯ β§ βπ¦ β π΄ (π₯π π¦ β βπ§ β πΆ π§π π¦))) |
infisoti.ti | β’ ((π β§ (π’ β π΄ β§ π£ β π΄)) β (π’ = π£ β (Β¬ π’π π£ β§ Β¬ π£π π’))) |
Ref | Expression |
---|---|
infisoti | β’ (π β inf((πΉ β πΆ), π΅, π) = (πΉβinf(πΆ, π΄, π ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infisoti.1 | . . . 4 β’ (π β πΉ Isom π , π (π΄, π΅)) | |
2 | isocnv2 5829 | . . . 4 β’ (πΉ Isom π , π (π΄, π΅) β πΉ Isom β‘π , β‘π(π΄, π΅)) | |
3 | 1, 2 | sylib 122 | . . 3 β’ (π β πΉ Isom β‘π , β‘π(π΄, π΅)) |
4 | infisoti.2 | . . 3 β’ (π β πΆ β π΄) | |
5 | infisoti.3 | . . . 4 β’ (π β βπ₯ β π΄ (βπ¦ β πΆ Β¬ π¦π π₯ β§ βπ¦ β π΄ (π₯π π¦ β βπ§ β πΆ π§π π¦))) | |
6 | 5 | cnvinfex 7036 | . . 3 β’ (π β βπ₯ β π΄ (βπ¦ β πΆ Β¬ π₯β‘π π¦ β§ βπ¦ β π΄ (π¦β‘π π₯ β βπ§ β πΆ π¦β‘π π§))) |
7 | infisoti.ti | . . . 4 β’ ((π β§ (π’ β π΄ β§ π£ β π΄)) β (π’ = π£ β (Β¬ π’π π£ β§ Β¬ π£π π’))) | |
8 | 7 | cnvti 7037 | . . 3 β’ ((π β§ (π’ β π΄ β§ π£ β π΄)) β (π’ = π£ β (Β¬ π’β‘π π£ β§ Β¬ π£β‘π π’))) |
9 | 3, 4, 6, 8 | supisoti 7028 | . 2 β’ (π β sup((πΉ β πΆ), π΅, β‘π) = (πΉβsup(πΆ, π΄, β‘π ))) |
10 | df-inf 7003 | . 2 β’ inf((πΉ β πΆ), π΅, π) = sup((πΉ β πΆ), π΅, β‘π) | |
11 | df-inf 7003 | . . 3 β’ inf(πΆ, π΄, π ) = sup(πΆ, π΄, β‘π ) | |
12 | 11 | fveq2i 5533 | . 2 β’ (πΉβinf(πΆ, π΄, π )) = (πΉβsup(πΆ, π΄, β‘π )) |
13 | 9, 10, 12 | 3eqtr4g 2247 | 1 β’ (π β inf((πΉ β πΆ), π΅, π) = (πΉβinf(πΆ, π΄, π ))) |
Colors of variables: wff set class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 104 β wb 105 = wceq 1364 β wcel 2160 βwral 2468 βwrex 2469 β wss 3144 class class class wbr 4018 β‘ccnv 4640 β cima 4644 βcfv 5231 Isom wiso 5232 supcsup 7000 infcinf 7001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-isom 5240 df-riota 5847 df-sup 7002 df-inf 7003 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |