| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infisoti | GIF version | ||
| Description: Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| infisoti.1 | ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| infisoti.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| infisoti.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) |
| infisoti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
| Ref | Expression |
|---|---|
| infisoti | ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infisoti.1 | . . . 4 ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
| 2 | isocnv2 5899 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐹 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) | |
| 3 | 1, 2 | sylib 122 | . . 3 ⊢ (𝜑 → 𝐹 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
| 4 | infisoti.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 5 | infisoti.3 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) | |
| 6 | 5 | cnvinfex 7141 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦◡𝑅𝑧))) |
| 7 | infisoti.ti | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
| 8 | 7 | cnvti 7142 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
| 9 | 3, 4, 6, 8 | supisoti 7133 | . 2 ⊢ (𝜑 → sup((𝐹 “ 𝐶), 𝐵, ◡𝑆) = (𝐹‘sup(𝐶, 𝐴, ◡𝑅))) |
| 10 | df-inf 7108 | . 2 ⊢ inf((𝐹 “ 𝐶), 𝐵, 𝑆) = sup((𝐹 “ 𝐶), 𝐵, ◡𝑆) | |
| 11 | df-inf 7108 | . . 3 ⊢ inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, ◡𝑅) | |
| 12 | 11 | fveq2i 5597 | . 2 ⊢ (𝐹‘inf(𝐶, 𝐴, 𝑅)) = (𝐹‘sup(𝐶, 𝐴, ◡𝑅)) |
| 13 | 9, 10, 12 | 3eqtr4g 2264 | 1 ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ⊆ wss 3170 class class class wbr 4054 ◡ccnv 4687 “ cima 4691 ‘cfv 5285 Isom wiso 5286 supcsup 7105 infcinf 7106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-sup 7107 df-inf 7108 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |