![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infisoti | GIF version |
Description: Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.) |
Ref | Expression |
---|---|
infisoti.1 | ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
infisoti.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
infisoti.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) |
infisoti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
Ref | Expression |
---|---|
infisoti | ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infisoti.1 | . . . 4 ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | isocnv2 5534 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐹 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) | |
3 | 1, 2 | sylib 120 | . . 3 ⊢ (𝜑 → 𝐹 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
4 | infisoti.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
5 | infisoti.3 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) | |
6 | 5 | cnvinfex 6634 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦◡𝑅𝑧))) |
7 | infisoti.ti | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
8 | 7 | cnvti 6635 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
9 | 3, 4, 6, 8 | supisoti 6626 | . 2 ⊢ (𝜑 → sup((𝐹 “ 𝐶), 𝐵, ◡𝑆) = (𝐹‘sup(𝐶, 𝐴, ◡𝑅))) |
10 | df-inf 6601 | . 2 ⊢ inf((𝐹 “ 𝐶), 𝐵, 𝑆) = sup((𝐹 “ 𝐶), 𝐵, ◡𝑆) | |
11 | df-inf 6601 | . . 3 ⊢ inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, ◡𝑅) | |
12 | 11 | fveq2i 5259 | . 2 ⊢ (𝐹‘inf(𝐶, 𝐴, 𝑅)) = (𝐹‘sup(𝐶, 𝐴, ◡𝑅)) |
13 | 9, 10, 12 | 3eqtr4g 2142 | 1 ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1287 ∈ wcel 1436 ∀wral 2355 ∃wrex 2356 ⊆ wss 2986 class class class wbr 3814 ◡ccnv 4403 “ cima 4407 ‘cfv 4972 Isom wiso 4973 supcsup 6598 infcinf 6599 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-sep 3925 ax-pow 3977 ax-pr 4003 |
This theorem depends on definitions: df-bi 115 df-3an 924 df-tru 1290 df-fal 1293 df-nf 1393 df-sb 1690 df-eu 1948 df-mo 1949 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ral 2360 df-rex 2361 df-reu 2362 df-rmo 2363 df-rab 2364 df-v 2616 df-sbc 2829 df-un 2990 df-in 2992 df-ss 2999 df-pw 3411 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-br 3815 df-opab 3869 df-mpt 3870 df-id 4087 df-xp 4410 df-rel 4411 df-cnv 4412 df-co 4413 df-dm 4414 df-rn 4415 df-res 4416 df-ima 4417 df-iota 4937 df-fun 4974 df-fn 4975 df-f 4976 df-f1 4977 df-fo 4978 df-f1o 4979 df-fv 4980 df-isom 4981 df-riota 5550 df-sup 6600 df-inf 6601 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |