ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infclti GIF version

Theorem infclti 7098
Description: An infimum belongs to its base class (closure law). See also inflbti 7099 and infglbti 7100. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypotheses
Ref Expression
infclti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
infclti.ex (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infclti (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑥,𝑦,𝑧   𝑢,𝑅,𝑣,𝑥,𝑦,𝑧   𝜑,𝑢,𝑣,𝑥,𝑦,𝑧

Proof of Theorem infclti
StepHypRef Expression
1 df-inf 7060 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infclti.ti . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
32cnvti 7094 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
4 infclti.ex . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
54cnvinfex 7093 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
63, 5supclti 7073 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
71, 6eqeltrid 2283 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2167  wral 2475  wrex 2476   class class class wbr 4034  ccnv 4663  supcsup 7057  infcinf 7058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-cnv 4672  df-iota 5220  df-riota 5880  df-sup 7059  df-inf 7060
This theorem is referenced by:  infrenegsupex  9685  supminfex  9688  infregelbex  9689  infssuzledc  10341  infxrnegsupex  11445
  Copyright terms: Public domain W3C validator