ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-riota GIF version

Definition df-riota 5922
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5251. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 5921 . 2 class (𝑥𝐴 𝜑)
52cv 1372 . . . . 5 class 𝑥
65, 3wcel 2178 . . . 4 wff 𝑥𝐴
76, 1wa 104 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 5249 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1373 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff set class
This definition is referenced by:  riotaeqdv  5923  riotabidv  5924  riotaexg  5926  iotaexel  5927  riotav  5928  riotauni  5929  nfriota1  5930  nfriotadxy  5931  cbvriota  5933  riotacl2  5936  riotabidva  5939  riota1  5941  riota2df  5943  snriota  5952  riotaund  5957  grpidvalg  13320  fn0g  13322  ismgmid  13324  oppr1g  13959  bdcriota  16018
  Copyright terms: Public domain W3C validator