ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-riota GIF version

Definition df-riota 5797
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5152. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 5796 . 2 class (𝑥𝐴 𝜑)
52cv 1342 . . . . 5 class 𝑥
65, 3wcel 2136 . . . 4 wff 𝑥𝐴
76, 1wa 103 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 5150 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1343 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff set class
This definition is referenced by:  riotaeqdv  5798  riotabidv  5799  riotaexg  5801  riotav  5802  riotauni  5803  nfriota1  5804  nfriotadxy  5805  cbvriota  5807  riotacl2  5810  riotabidva  5813  riota1  5815  riota2df  5817  snriota  5826  riotaund  5831  bdcriota  13725
  Copyright terms: Public domain W3C validator