| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-riota | GIF version | ||
| Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5232. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
| Ref | Expression |
|---|---|
| df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crio 5898 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
| 5 | 2 | cv 1372 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2176 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cio 5230 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 9 | 4, 8 | wceq 1373 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: riotaeqdv 5900 riotabidv 5901 riotaexg 5903 iotaexel 5904 riotav 5905 riotauni 5906 nfriota1 5907 nfriotadxy 5908 cbvriota 5910 riotacl2 5913 riotabidva 5916 riota1 5918 riota2df 5920 snriota 5929 riotaund 5934 grpidvalg 13205 fn0g 13207 ismgmid 13209 oppr1g 13844 bdcriota 15819 |
| Copyright terms: Public domain | W3C validator |