ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-riota GIF version

Definition df-riota 5954
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5278. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 5953 . 2 class (𝑥𝐴 𝜑)
52cv 1394 . . . . 5 class 𝑥
65, 3wcel 2200 . . . 4 wff 𝑥𝐴
76, 1wa 104 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 5276 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1395 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff set class
This definition is referenced by:  riotaeqdv  5955  riotabidv  5956  riotaexg  5958  iotaexel  5959  riotav  5960  riotauni  5961  nfriota1  5962  nfriotadxy  5963  cbvriotavw  5965  cbvriota  5966  riotacl2  5969  riotabidva  5972  riota1  5974  riota2df  5976  snriota  5986  riotaund  5991  grpidvalg  13406  fn0g  13408  ismgmid  13410  oppr1g  14045  bdcriota  16246
  Copyright terms: Public domain W3C validator