ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-riota GIF version

Definition df-riota 5874
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5216. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 5873 . 2 class (𝑥𝐴 𝜑)
52cv 1363 . . . . 5 class 𝑥
65, 3wcel 2164 . . . 4 wff 𝑥𝐴
76, 1wa 104 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 5214 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1364 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff set class
This definition is referenced by:  riotaeqdv  5875  riotabidv  5876  riotaexg  5878  iotaexel  5879  riotav  5880  riotauni  5881  nfriota1  5882  nfriotadxy  5883  cbvriota  5885  riotacl2  5888  riotabidva  5891  riota1  5893  riota2df  5895  snriota  5904  riotaund  5909  grpidvalg  12959  fn0g  12961  ismgmid  12963  oppr1g  13581  bdcriota  15445
  Copyright terms: Public domain W3C validator