ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-riota GIF version

Definition df-riota 5877
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5219. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 5876 . 2 class (𝑥𝐴 𝜑)
52cv 1363 . . . . 5 class 𝑥
65, 3wcel 2167 . . . 4 wff 𝑥𝐴
76, 1wa 104 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 5217 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1364 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff set class
This definition is referenced by:  riotaeqdv  5878  riotabidv  5879  riotaexg  5881  iotaexel  5882  riotav  5883  riotauni  5884  nfriota1  5885  nfriotadxy  5886  cbvriota  5888  riotacl2  5891  riotabidva  5894  riota1  5896  riota2df  5898  snriota  5907  riotaund  5912  grpidvalg  13016  fn0g  13018  ismgmid  13020  oppr1g  13638  bdcriota  15529
  Copyright terms: Public domain W3C validator