ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-riota GIF version

Definition df-riota 5899
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5232. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 5898 . 2 class (𝑥𝐴 𝜑)
52cv 1372 . . . . 5 class 𝑥
65, 3wcel 2176 . . . 4 wff 𝑥𝐴
76, 1wa 104 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 5230 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1373 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff set class
This definition is referenced by:  riotaeqdv  5900  riotabidv  5901  riotaexg  5903  iotaexel  5904  riotav  5905  riotauni  5906  nfriota1  5907  nfriotadxy  5908  cbvriota  5910  riotacl2  5913  riotabidva  5916  riota1  5918  riota2df  5920  snriota  5929  riotaund  5934  grpidvalg  13205  fn0g  13207  ismgmid  13209  oppr1g  13844  bdcriota  15823
  Copyright terms: Public domain W3C validator