| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-riota | GIF version | ||
| Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5278. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
| Ref | Expression |
|---|---|
| df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crio 5953 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
| 5 | 2 | cv 1394 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2200 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cio 5276 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 9 | 4, 8 | wceq 1395 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: riotaeqdv 5955 riotabidv 5956 riotaexg 5958 iotaexel 5959 riotav 5960 riotauni 5961 nfriota1 5962 nfriotadxy 5963 cbvriotavw 5965 cbvriota 5966 riotacl2 5969 riotabidva 5972 riota1 5974 riota2df 5976 snriota 5986 riotaund 5991 grpidvalg 13406 fn0g 13408 ismgmid 13410 oppr1g 14045 bdcriota 16246 |
| Copyright terms: Public domain | W3C validator |