| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-riota | GIF version | ||
| Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5219. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crio 5876 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) | 
| 5 | 2 | cv 1363 | . . . . 5 class 𝑥 | 
| 6 | 5, 3 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 | 
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) | 
| 8 | 7, 2 | cio 5217 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 9 | 4, 8 | wceq 1364 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: riotaeqdv 5878 riotabidv 5879 riotaexg 5881 iotaexel 5882 riotav 5883 riotauni 5884 nfriota1 5885 nfriotadxy 5886 cbvriota 5888 riotacl2 5891 riotabidva 5894 riota1 5896 riota2df 5898 snriota 5907 riotaund 5912 grpidvalg 13016 fn0g 13018 ismgmid 13020 oppr1g 13638 bdcriota 15529 | 
| Copyright terms: Public domain | W3C validator |