ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabidv GIF version

Theorem riotabidv 5962
Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotabidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
riotabidv (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem riotabidv
StepHypRef Expression
1 biidd 172 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐴))
2 riotabidv.1 . . . 4 (𝜑 → (𝜓𝜒))
31, 2anbi12d 473 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
43iotabidv 5301 . 2 (𝜑 → (℩𝑥(𝑥𝐴𝜓)) = (℩𝑥(𝑥𝐴𝜒)))
5 df-riota 5960 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
6 df-riota 5960 . 2 (𝑥𝐴 𝜒) = (℩𝑥(𝑥𝐴𝜒))
74, 5, 63eqtr4g 2287 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  cio 5276  crio 5959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-uni 3889  df-iota 5278  df-riota 5960
This theorem is referenced by:  riotaeqbidv  5963  csbriotag  5974  infvalti  7197  caucvgsrlemfv  7986  axcaucvglemval  8092  axcaucvglemcau  8093  subval  8346  divvalap  8829  divfnzn  9824  flval  10500  cjval  11364  sqrtrval  11519  qnumval  12715  qdenval  12716  grpinvval  13584  uspgredg2v  16027  usgredg2v  16030
  Copyright terms: Public domain W3C validator