ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabidv GIF version

Theorem riotabidv 5911
Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotabidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
riotabidv (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem riotabidv
StepHypRef Expression
1 biidd 172 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐴))
2 riotabidv.1 . . . 4 (𝜑 → (𝜓𝜒))
31, 2anbi12d 473 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
43iotabidv 5260 . 2 (𝜑 → (℩𝑥(𝑥𝐴𝜓)) = (℩𝑥(𝑥𝐴𝜒)))
5 df-riota 5909 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
6 df-riota 5909 . 2 (𝑥𝐴 𝜒) = (℩𝑥(𝑥𝐴𝜒))
74, 5, 63eqtr4g 2264 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  cio 5236  crio 5908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-uni 3854  df-iota 5238  df-riota 5909
This theorem is referenced by:  riotaeqbidv  5912  csbriotag  5922  infvalti  7136  caucvgsrlemfv  7917  axcaucvglemval  8023  axcaucvglemcau  8024  subval  8277  divvalap  8760  divfnzn  9755  flval  10428  cjval  11206  sqrtrval  11361  qnumval  12557  qdenval  12558  grpinvval  13425
  Copyright terms: Public domain W3C validator