ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabidv GIF version

Theorem riotabidv 5811
Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotabidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
riotabidv (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem riotabidv
StepHypRef Expression
1 biidd 171 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐴))
2 riotabidv.1 . . . 4 (𝜑 → (𝜓𝜒))
31, 2anbi12d 470 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
43iotabidv 5181 . 2 (𝜑 → (℩𝑥(𝑥𝐴𝜓)) = (℩𝑥(𝑥𝐴𝜒)))
5 df-riota 5809 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
6 df-riota 5809 . 2 (𝑥𝐴 𝜒) = (℩𝑥(𝑥𝐴𝜒))
74, 5, 63eqtr4g 2228 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  cio 5158  crio 5808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-uni 3797  df-iota 5160  df-riota 5809
This theorem is referenced by:  riotaeqbidv  5812  csbriotag  5821  infvalti  6999  caucvgsrlemfv  7753  axcaucvglemval  7859  axcaucvglemcau  7860  subval  8111  divvalap  8591  divfnzn  9580  flval  10228  cjval  10809  sqrtrval  10964  qnumval  12139  qdenval  12140  grpinvval  12746
  Copyright terms: Public domain W3C validator