![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riotauni | GIF version |
Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.) |
Ref | Expression |
---|---|
riotauni | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2479 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | iotauni 5227 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
3 | 1, 2 | sylbi 121 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
4 | df-riota 5873 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | df-rab 2481 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
6 | 5 | unieqi 3845 | . 2 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
7 | 3, 4, 6 | 3eqtr4g 2251 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃!weu 2042 ∈ wcel 2164 {cab 2179 ∃!wreu 2474 {crab 2476 ∪ cuni 3835 ℩cio 5213 ℩crio 5872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-sn 3624 df-pr 3625 df-uni 3836 df-iota 5215 df-riota 5873 |
This theorem is referenced by: supval2ti 7054 |
Copyright terms: Public domain | W3C validator |