| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotauni | GIF version | ||
| Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.) |
| Ref | Expression |
|---|---|
| riotauni | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 2482 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | iotauni 5231 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
| 3 | 1, 2 | sylbi 121 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 4 | df-riota 5877 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rab 2484 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 6 | 5 | unieqi 3849 | . 2 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 7 | 3, 4, 6 | 3eqtr4g 2254 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃!weu 2045 ∈ wcel 2167 {cab 2182 ∃!wreu 2477 {crab 2479 ∪ cuni 3839 ℩cio 5217 ℩crio 5876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 df-riota 5877 |
| This theorem is referenced by: supval2ti 7061 |
| Copyright terms: Public domain | W3C validator |