| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotauni | GIF version | ||
| Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.) |
| Ref | Expression |
|---|---|
| riotauni | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 2493 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | iotauni 5263 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
| 3 | 1, 2 | sylbi 121 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 4 | df-riota 5922 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rab 2495 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 6 | 5 | unieqi 3874 | . 2 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 7 | 3, 4, 6 | 3eqtr4g 2265 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃!weu 2055 ∈ wcel 2178 {cab 2193 ∃!wreu 2488 {crab 2490 ∪ cuni 3864 ℩cio 5249 ℩crio 5921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-sn 3649 df-pr 3650 df-uni 3865 df-iota 5251 df-riota 5922 |
| This theorem is referenced by: supval2ti 7123 |
| Copyright terms: Public domain | W3C validator |