| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotauni | GIF version | ||
| Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.) |
| Ref | Expression |
|---|---|
| riotauni | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 2515 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | iotauni 5291 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
| 3 | 1, 2 | sylbi 121 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 4 | df-riota 5954 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rab 2517 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 6 | 5 | unieqi 3898 | . 2 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 7 | 3, 4, 6 | 3eqtr4g 2287 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃!weu 2077 ∈ wcel 2200 {cab 2215 ∃!wreu 2510 {crab 2512 ∪ cuni 3888 ℩cio 5276 ℩crio 5953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3889 df-iota 5278 df-riota 5954 |
| This theorem is referenced by: supval2ti 7162 |
| Copyright terms: Public domain | W3C validator |