Step | Hyp | Ref
| Expression |
1 | | grpidval.o |
. 2
⊢ 0 =
(0g‘𝐺) |
2 | | df-0g 12575 |
. . 3
⊢
0g = (𝑔
∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) |
3 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
4 | | grpidval.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
5 | 3, 4 | eqtr4di 2217 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
6 | 5 | eleq2d 2236 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑒 ∈ (Base‘𝑔) ↔ 𝑒 ∈ 𝐵)) |
7 | | fveq2 5486 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) |
8 | | grpidval.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝐺) |
9 | 7, 8 | eqtr4di 2217 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
10 | 9 | oveqd 5859 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑒(+g‘𝑔)𝑥) = (𝑒 + 𝑥)) |
11 | 10 | eqeq1d 2174 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑒(+g‘𝑔)𝑥) = 𝑥 ↔ (𝑒 + 𝑥) = 𝑥)) |
12 | 9 | oveqd 5859 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑒) = (𝑥 + 𝑒)) |
13 | 12 | eqeq1d 2174 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑥(+g‘𝑔)𝑒) = 𝑥 ↔ (𝑥 + 𝑒) = 𝑥)) |
14 | 11, 13 | anbi12d 465 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥) ↔ ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
15 | 5, 14 | raleqbidv 2673 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
16 | 6, 15 | anbi12d 465 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) ↔ (𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))) |
17 | 16 | iotabidv 5174 |
. . 3
⊢ (𝑔 = 𝐺 → (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))) |
18 | | elex 2737 |
. . 3
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
19 | | df-riota 5798 |
. . . 4
⊢
(℩𝑒
∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
20 | | basfn 12451 |
. . . . . . 7
⊢ Base Fn
V |
21 | | funfvex 5503 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝐺 ∈ dom
Base) → (Base‘𝐺)
∈ V) |
22 | 21 | funfni 5288 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝐺 ∈ V) →
(Base‘𝐺) ∈
V) |
23 | 20, 18, 22 | sylancr 411 |
. . . . . 6
⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
24 | 4, 23 | eqeltrid 2253 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
25 | | riotaexg 5802 |
. . . . 5
⊢ (𝐵 ∈ V →
(℩𝑒 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ V) |
26 | 24, 25 | syl 14 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ V) |
27 | 19, 26 | eqeltrrid 2254 |
. . 3
⊢ (𝐺 ∈ 𝑉 → (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) ∈ V) |
28 | 2, 17, 18, 27 | fvmptd3 5579 |
. 2
⊢ (𝐺 ∈ 𝑉 → (0g‘𝐺) = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))) |
29 | 1, 28 | eqtrid 2210 |
1
⊢ (𝐺 ∈ 𝑉 → 0 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))) |