ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidvalg GIF version

Theorem grpidvalg 12956
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpidval.b 𝐵 = (Base‘𝐺)
grpidval.p + = (+g𝐺)
grpidval.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidvalg (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
Distinct variable groups:   𝑥,𝑒,𝐵   𝑒,𝐺,𝑥
Allowed substitution hints:   + (𝑥,𝑒)   𝑉(𝑥,𝑒)   0 (𝑥,𝑒)

Proof of Theorem grpidvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpidval.o . 2 0 = (0g𝐺)
2 df-0g 12869 . . 3 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
3 fveq2 5554 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 grpidval.b . . . . . . 7 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2244 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
65eleq2d 2263 . . . . 5 (𝑔 = 𝐺 → (𝑒 ∈ (Base‘𝑔) ↔ 𝑒𝐵))
7 fveq2 5554 . . . . . . . . . 10 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
8 grpidval.p . . . . . . . . . 10 + = (+g𝐺)
97, 8eqtr4di 2244 . . . . . . . . 9 (𝑔 = 𝐺 → (+g𝑔) = + )
109oveqd 5935 . . . . . . . 8 (𝑔 = 𝐺 → (𝑒(+g𝑔)𝑥) = (𝑒 + 𝑥))
1110eqeq1d 2202 . . . . . . 7 (𝑔 = 𝐺 → ((𝑒(+g𝑔)𝑥) = 𝑥 ↔ (𝑒 + 𝑥) = 𝑥))
129oveqd 5935 . . . . . . . 8 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑒) = (𝑥 + 𝑒))
1312eqeq1d 2202 . . . . . . 7 (𝑔 = 𝐺 → ((𝑥(+g𝑔)𝑒) = 𝑥 ↔ (𝑥 + 𝑒) = 𝑥))
1411, 13anbi12d 473 . . . . . 6 (𝑔 = 𝐺 → (((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥) ↔ ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
155, 14raleqbidv 2706 . . . . 5 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
166, 15anbi12d 473 . . . 4 (𝑔 = 𝐺 → ((𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
1716iotabidv 5237 . . 3 (𝑔 = 𝐺 → (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
18 elex 2771 . . 3 (𝐺𝑉𝐺 ∈ V)
19 df-riota 5873 . . . 4 (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
20 basfn 12676 . . . . . . 7 Base Fn V
21 funfvex 5571 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
2221funfni 5354 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
2320, 18, 22sylancr 414 . . . . . 6 (𝐺𝑉 → (Base‘𝐺) ∈ V)
244, 23eqeltrid 2280 . . . . 5 (𝐺𝑉𝐵 ∈ V)
25 riotaexg 5877 . . . . 5 (𝐵 ∈ V → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ V)
2624, 25syl 14 . . . 4 (𝐺𝑉 → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ V)
2719, 26eqeltrrid 2281 . . 3 (𝐺𝑉 → (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) ∈ V)
282, 17, 18, 27fvmptd3 5651 . 2 (𝐺𝑉 → (0g𝐺) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
291, 28eqtrid 2238 1 (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cio 5213   Fn wfn 5249  cfv 5254  crio 5872  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869
This theorem is referenced by:  grpidpropdg  12957  0g0  12959  ismgmid  12960  sgrpidmndm  13001  dfur2g  13458  oppr0g  13577  oppr1g  13578
  Copyright terms: Public domain W3C validator