ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidvalg GIF version

Theorem grpidvalg 12627
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpidval.b 𝐵 = (Base‘𝐺)
grpidval.p + = (+g𝐺)
grpidval.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidvalg (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
Distinct variable groups:   𝑥,𝑒,𝐵   𝑒,𝐺,𝑥
Allowed substitution hints:   + (𝑥,𝑒)   𝑉(𝑥,𝑒)   0 (𝑥,𝑒)

Proof of Theorem grpidvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpidval.o . 2 0 = (0g𝐺)
2 df-0g 12598 . . 3 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
3 fveq2 5496 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 grpidval.b . . . . . . 7 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2221 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
65eleq2d 2240 . . . . 5 (𝑔 = 𝐺 → (𝑒 ∈ (Base‘𝑔) ↔ 𝑒𝐵))
7 fveq2 5496 . . . . . . . . . 10 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
8 grpidval.p . . . . . . . . . 10 + = (+g𝐺)
97, 8eqtr4di 2221 . . . . . . . . 9 (𝑔 = 𝐺 → (+g𝑔) = + )
109oveqd 5870 . . . . . . . 8 (𝑔 = 𝐺 → (𝑒(+g𝑔)𝑥) = (𝑒 + 𝑥))
1110eqeq1d 2179 . . . . . . 7 (𝑔 = 𝐺 → ((𝑒(+g𝑔)𝑥) = 𝑥 ↔ (𝑒 + 𝑥) = 𝑥))
129oveqd 5870 . . . . . . . 8 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑒) = (𝑥 + 𝑒))
1312eqeq1d 2179 . . . . . . 7 (𝑔 = 𝐺 → ((𝑥(+g𝑔)𝑒) = 𝑥 ↔ (𝑥 + 𝑒) = 𝑥))
1411, 13anbi12d 470 . . . . . 6 (𝑔 = 𝐺 → (((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥) ↔ ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
155, 14raleqbidv 2677 . . . . 5 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
166, 15anbi12d 470 . . . 4 (𝑔 = 𝐺 → ((𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
1716iotabidv 5181 . . 3 (𝑔 = 𝐺 → (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
18 elex 2741 . . 3 (𝐺𝑉𝐺 ∈ V)
19 df-riota 5809 . . . 4 (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
20 basfn 12473 . . . . . . 7 Base Fn V
21 funfvex 5513 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
2221funfni 5298 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
2320, 18, 22sylancr 412 . . . . . 6 (𝐺𝑉 → (Base‘𝐺) ∈ V)
244, 23eqeltrid 2257 . . . . 5 (𝐺𝑉𝐵 ∈ V)
25 riotaexg 5813 . . . . 5 (𝐵 ∈ V → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ V)
2624, 25syl 14 . . . 4 (𝐺𝑉 → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ V)
2719, 26eqeltrrid 2258 . . 3 (𝐺𝑉 → (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) ∈ V)
282, 17, 18, 27fvmptd3 5589 . 2 (𝐺𝑉 → (0g𝐺) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
291, 28eqtrid 2215 1 (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  cio 5158   Fn wfn 5193  cfv 5198  crio 5808  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  0gc0g 12596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-0g 12598
This theorem is referenced by:  grpidpropdg  12628  0g0  12630  ismgmid  12631  sgrpidmndm  12656
  Copyright terms: Public domain W3C validator