ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidvalg GIF version

Theorem grpidvalg 12852
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpidval.b 𝐵 = (Base‘𝐺)
grpidval.p + = (+g𝐺)
grpidval.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidvalg (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
Distinct variable groups:   𝑥,𝑒,𝐵   𝑒,𝐺,𝑥
Allowed substitution hints:   + (𝑥,𝑒)   𝑉(𝑥,𝑒)   0 (𝑥,𝑒)

Proof of Theorem grpidvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpidval.o . 2 0 = (0g𝐺)
2 df-0g 12766 . . 3 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
3 fveq2 5534 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 grpidval.b . . . . . . 7 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2240 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
65eleq2d 2259 . . . . 5 (𝑔 = 𝐺 → (𝑒 ∈ (Base‘𝑔) ↔ 𝑒𝐵))
7 fveq2 5534 . . . . . . . . . 10 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
8 grpidval.p . . . . . . . . . 10 + = (+g𝐺)
97, 8eqtr4di 2240 . . . . . . . . 9 (𝑔 = 𝐺 → (+g𝑔) = + )
109oveqd 5914 . . . . . . . 8 (𝑔 = 𝐺 → (𝑒(+g𝑔)𝑥) = (𝑒 + 𝑥))
1110eqeq1d 2198 . . . . . . 7 (𝑔 = 𝐺 → ((𝑒(+g𝑔)𝑥) = 𝑥 ↔ (𝑒 + 𝑥) = 𝑥))
129oveqd 5914 . . . . . . . 8 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑒) = (𝑥 + 𝑒))
1312eqeq1d 2198 . . . . . . 7 (𝑔 = 𝐺 → ((𝑥(+g𝑔)𝑒) = 𝑥 ↔ (𝑥 + 𝑒) = 𝑥))
1411, 13anbi12d 473 . . . . . 6 (𝑔 = 𝐺 → (((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥) ↔ ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
155, 14raleqbidv 2698 . . . . 5 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
166, 15anbi12d 473 . . . 4 (𝑔 = 𝐺 → ((𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
1716iotabidv 5218 . . 3 (𝑔 = 𝐺 → (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
18 elex 2763 . . 3 (𝐺𝑉𝐺 ∈ V)
19 df-riota 5852 . . . 4 (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
20 basfn 12573 . . . . . . 7 Base Fn V
21 funfvex 5551 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
2221funfni 5335 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
2320, 18, 22sylancr 414 . . . . . 6 (𝐺𝑉 → (Base‘𝐺) ∈ V)
244, 23eqeltrid 2276 . . . . 5 (𝐺𝑉𝐵 ∈ V)
25 riotaexg 5856 . . . . 5 (𝐵 ∈ V → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ V)
2624, 25syl 14 . . . 4 (𝐺𝑉 → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ V)
2719, 26eqeltrrid 2277 . . 3 (𝐺𝑉 → (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) ∈ V)
282, 17, 18, 27fvmptd3 5630 . 2 (𝐺𝑉 → (0g𝐺) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
291, 28eqtrid 2234 1 (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wral 2468  Vcvv 2752  cio 5194   Fn wfn 5230  cfv 5235  crio 5851  (class class class)co 5897  Basecbs 12515  +gcplusg 12592  0gc0g 12764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-riota 5852  df-ov 5900  df-inn 8951  df-ndx 12518  df-slot 12519  df-base 12521  df-0g 12766
This theorem is referenced by:  grpidpropdg  12853  0g0  12855  ismgmid  12856  sgrpidmndm  12896  dfur2g  13333  oppr0g  13448  oppr1g  13449
  Copyright terms: Public domain W3C validator