ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidvalg GIF version

Theorem grpidvalg 13414
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpidval.b 𝐵 = (Base‘𝐺)
grpidval.p + = (+g𝐺)
grpidval.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidvalg (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
Distinct variable groups:   𝑥,𝑒,𝐵   𝑒,𝐺,𝑥
Allowed substitution hints:   + (𝑥,𝑒)   𝑉(𝑥,𝑒)   0 (𝑥,𝑒)

Proof of Theorem grpidvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpidval.o . 2 0 = (0g𝐺)
2 df-0g 13299 . . 3 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
3 fveq2 5629 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 grpidval.b . . . . . . 7 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2280 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
65eleq2d 2299 . . . . 5 (𝑔 = 𝐺 → (𝑒 ∈ (Base‘𝑔) ↔ 𝑒𝐵))
7 fveq2 5629 . . . . . . . . . 10 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
8 grpidval.p . . . . . . . . . 10 + = (+g𝐺)
97, 8eqtr4di 2280 . . . . . . . . 9 (𝑔 = 𝐺 → (+g𝑔) = + )
109oveqd 6024 . . . . . . . 8 (𝑔 = 𝐺 → (𝑒(+g𝑔)𝑥) = (𝑒 + 𝑥))
1110eqeq1d 2238 . . . . . . 7 (𝑔 = 𝐺 → ((𝑒(+g𝑔)𝑥) = 𝑥 ↔ (𝑒 + 𝑥) = 𝑥))
129oveqd 6024 . . . . . . . 8 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑒) = (𝑥 + 𝑒))
1312eqeq1d 2238 . . . . . . 7 (𝑔 = 𝐺 → ((𝑥(+g𝑔)𝑒) = 𝑥 ↔ (𝑥 + 𝑒) = 𝑥))
1411, 13anbi12d 473 . . . . . 6 (𝑔 = 𝐺 → (((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥) ↔ ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
155, 14raleqbidv 2744 . . . . 5 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
166, 15anbi12d 473 . . . 4 (𝑔 = 𝐺 → ((𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
1716iotabidv 5301 . . 3 (𝑔 = 𝐺 → (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
18 elex 2811 . . 3 (𝐺𝑉𝐺 ∈ V)
19 df-riota 5960 . . . 4 (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
20 basfn 13099 . . . . . . 7 Base Fn V
21 funfvex 5646 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
2221funfni 5423 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
2320, 18, 22sylancr 414 . . . . . 6 (𝐺𝑉 → (Base‘𝐺) ∈ V)
244, 23eqeltrid 2316 . . . . 5 (𝐺𝑉𝐵 ∈ V)
25 riotaexg 5964 . . . . 5 (𝐵 ∈ V → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ V)
2624, 25syl 14 . . . 4 (𝐺𝑉 → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ V)
2719, 26eqeltrrid 2317 . . 3 (𝐺𝑉 → (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) ∈ V)
282, 17, 18, 27fvmptd3 5730 . 2 (𝐺𝑉 → (0g𝐺) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
291, 28eqtrid 2274 1 (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  cio 5276   Fn wfn 5313  cfv 5318  crio 5959  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  0gc0g 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5960  df-ov 6010  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-0g 13299
This theorem is referenced by:  grpidpropdg  13415  0g0  13417  ismgmid  13418  sgrpidmndm  13461  dfur2g  13933  oppr0g  14052  oppr1g  14053
  Copyright terms: Public domain W3C validator