Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riota1 | GIF version |
Description: Property of restricted iota. Compare iota1 5174. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota1 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2455 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | iota1 5174 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) | |
3 | 1, 2 | sylbi 120 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) |
4 | df-riota 5809 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 4 | eqeq1i 2178 | . 2 ⊢ ((℩𝑥 ∈ 𝐴 𝜑) = 𝑥 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥) |
6 | 3, 5 | bitr4di 197 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∃!weu 2019 ∈ wcel 2141 ∃!wreu 2450 ℩cio 5158 ℩crio 5808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 df-riota 5809 |
This theorem is referenced by: supelti 6979 oddpwdclemdvds 12124 oddpwdclemndvds 12125 |
Copyright terms: Public domain | W3C validator |