ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota1 GIF version

Theorem riota1 5896
Description: Property of restricted iota. Compare iota1 5233. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 2482 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iota1 5233 . . 3 (∃!𝑥(𝑥𝐴𝜑) → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
31, 2sylbi 121 . 2 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
4 df-riota 5877 . . 3 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
54eqeq1i 2204 . 2 ((𝑥𝐴 𝜑) = 𝑥 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥)
63, 5bitr4di 198 1 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  ∃!weu 2045  wcel 2167  ∃!wreu 2477  cio 5217  crio 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840  df-iota 5219  df-riota 5877
This theorem is referenced by:  supelti  7068  oddpwdclemdvds  12338  oddpwdclemndvds  12339
  Copyright terms: Public domain W3C validator