ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota1 GIF version

Theorem riota1 5941
Description: Property of restricted iota. Compare iota1 5265. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 2493 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iota1 5265 . . 3 (∃!𝑥(𝑥𝐴𝜑) → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
31, 2sylbi 121 . 2 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
4 df-riota 5922 . . 3 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
54eqeq1i 2215 . 2 ((𝑥𝐴 𝜑) = 𝑥 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥)
63, 5bitr4di 198 1 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  ∃!weu 2055  wcel 2178  ∃!wreu 2488  cio 5249  crio 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-reu 2493  df-v 2778  df-sbc 3006  df-un 3178  df-sn 3649  df-pr 3650  df-uni 3865  df-iota 5251  df-riota 5922
This theorem is referenced by:  supelti  7130  oddpwdclemdvds  12607  oddpwdclemndvds  12608
  Copyright terms: Public domain W3C validator