| Step | Hyp | Ref
| Expression |
| 1 | | eleq1 2259 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
| 2 | | sbequ12 1785 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 3 | 1, 2 | anbi12d 473 |
. . . 4
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) |
| 4 | | nfv 1542 |
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 5 | | nfv 1542 |
. . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 6 | | nfs1v 1958 |
. . . . 5
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 7 | 5, 6 | nfan 1579 |
. . . 4
⊢
Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
| 8 | 3, 4, 7 | cbviota 5224 |
. . 3
⊢
(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = (℩𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
| 9 | | eleq1 2259 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 10 | | sbequ 1854 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 11 | | cbvriota.2 |
. . . . . . 7
⊢
Ⅎ𝑥𝜓 |
| 12 | | cbvriota.3 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 13 | 11, 12 | sbie 1805 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 14 | 10, 13 | bitrdi 196 |
. . . . 5
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
| 15 | 9, 14 | anbi12d 473 |
. . . 4
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 16 | | nfv 1542 |
. . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ 𝐴 |
| 17 | | cbvriota.1 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
| 18 | 17 | nfsb 1965 |
. . . . 5
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
| 19 | 16, 18 | nfan 1579 |
. . . 4
⊢
Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
| 20 | | nfv 1542 |
. . . 4
⊢
Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) |
| 21 | 15, 19, 20 | cbviota 5224 |
. . 3
⊢
(℩𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 22 | 8, 21 | eqtri 2217 |
. 2
⊢
(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 23 | | df-riota 5877 |
. 2
⊢
(℩𝑥
∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 24 | | df-riota 5877 |
. 2
⊢
(℩𝑦
∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 25 | 22, 23, 24 | 3eqtr4i 2227 |
1
⊢
(℩𝑥
∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |