Step | Hyp | Ref
| Expression |
1 | | eleq1 2233 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
2 | | sbequ12 1764 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
3 | 1, 2 | anbi12d 470 |
. . . 4
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) |
4 | | nfv 1521 |
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) |
5 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ 𝐴 |
6 | | nfs1v 1932 |
. . . . 5
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
7 | 5, 6 | nfan 1558 |
. . . 4
⊢
Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
8 | 3, 4, 7 | cbviota 5165 |
. . 3
⊢
(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = (℩𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
9 | | eleq1 2233 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
10 | | sbequ 1833 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
11 | | cbvriota.2 |
. . . . . . 7
⊢
Ⅎ𝑥𝜓 |
12 | | cbvriota.3 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
13 | 11, 12 | sbie 1784 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
14 | 10, 13 | bitrdi 195 |
. . . . 5
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
15 | 9, 14 | anbi12d 470 |
. . . 4
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
16 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ 𝐴 |
17 | | cbvriota.1 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
18 | 17 | nfsb 1939 |
. . . . 5
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
19 | 16, 18 | nfan 1558 |
. . . 4
⊢
Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
20 | | nfv 1521 |
. . . 4
⊢
Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) |
21 | 15, 19, 20 | cbviota 5165 |
. . 3
⊢
(℩𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
22 | 8, 21 | eqtri 2191 |
. 2
⊢
(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
23 | | df-riota 5809 |
. 2
⊢
(℩𝑥
∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
24 | | df-riota 5809 |
. 2
⊢
(℩𝑦
∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
25 | 22, 23, 24 | 3eqtr4i 2201 |
1
⊢
(℩𝑥
∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |