ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0g GIF version

Theorem fn0g 12629
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Assertion
Ref Expression
fn0g 0g Fn V

Proof of Theorem fn0g
Dummy variables 𝑒 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-riota 5809 . . 3 (𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) = (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)))
2 basfn 12473 . . . . 5 Base Fn V
3 vex 2733 . . . . 5 𝑔 ∈ V
4 funfvex 5513 . . . . . 6 ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V)
54funfni 5298 . . . . 5 ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V)
62, 3, 5mp2an 424 . . . 4 (Base‘𝑔) ∈ V
7 riotaexg 5813 . . . 4 ((Base‘𝑔) ∈ V → (𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ∈ V)
86, 7ax-mp 5 . . 3 (𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ∈ V
91, 8eqeltrri 2244 . 2 (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))) ∈ V
10 df-0g 12598 . 2 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
119, 10fnmpti 5326 1 0g Fn V
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  cio 5158   Fn wfn 5193  cfv 5198  crio 5808  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  0gc0g 12596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-0g 12598
This theorem is referenced by:  0mhm  12704
  Copyright terms: Public domain W3C validator