![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fn0g | GIF version |
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
fn0g | ⊢ 0g Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 5831 | . . 3 ⊢ (℩𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) = (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) | |
2 | basfn 12520 | . . . . 5 ⊢ Base Fn V | |
3 | vex 2741 | . . . . 5 ⊢ 𝑔 ∈ V | |
4 | funfvex 5533 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V) | |
5 | 4 | funfni 5317 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V) |
6 | 2, 3, 5 | mp2an 426 | . . . 4 ⊢ (Base‘𝑔) ∈ V |
7 | riotaexg 5835 | . . . 4 ⊢ ((Base‘𝑔) ∈ V → (℩𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) ∈ V) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (℩𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) ∈ V |
9 | 1, 8 | eqeltrri 2251 | . 2 ⊢ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) ∈ V |
10 | df-0g 12707 | . 2 ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | |
11 | 9, 10 | fnmpti 5345 | 1 ⊢ 0g Fn V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 Vcvv 2738 ℩cio 5177 Fn wfn 5212 ‘cfv 5217 ℩crio 5830 (class class class)co 5875 Basecbs 12462 +gcplusg 12536 0gc0g 12705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-cnex 7902 ax-resscn 7903 ax-1re 7905 ax-addrcl 7908 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-iota 5179 df-fun 5219 df-fn 5220 df-fv 5225 df-riota 5831 df-inn 8920 df-ndx 12465 df-slot 12466 df-base 12468 df-0g 12707 |
This theorem is referenced by: 0mhm 12873 mulgval 12986 mulgfng 12987 issrg 13148 |
Copyright terms: Public domain | W3C validator |