ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0g GIF version

Theorem fn0g 13394
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Assertion
Ref Expression
fn0g 0g Fn V

Proof of Theorem fn0g
Dummy variables 𝑒 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-riota 5947 . . 3 (𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) = (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)))
2 basfn 13077 . . . . 5 Base Fn V
3 vex 2802 . . . . 5 𝑔 ∈ V
4 funfvex 5640 . . . . . 6 ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V)
54funfni 5419 . . . . 5 ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V)
62, 3, 5mp2an 426 . . . 4 (Base‘𝑔) ∈ V
7 riotaexg 5951 . . . 4 ((Base‘𝑔) ∈ V → (𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ∈ V)
86, 7ax-mp 5 . . 3 (𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ∈ V
91, 8eqeltrri 2303 . 2 (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))) ∈ V
10 df-0g 13277 . 2 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
119, 10fnmpti 5448 1 0g Fn V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  cio 5272   Fn wfn 5309  cfv 5314  crio 5946  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  0gc0g 13275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-inn 9099  df-ndx 13021  df-slot 13022  df-base 13024  df-0g 13277
This theorem is referenced by:  fngsum  13407  igsumvalx  13408  gsumfzval  13410  gsum0g  13415  prdsidlem  13466  pws0g  13470  0mhm  13505  prdsinvlem  13627  mulgval  13645  mulgfng  13647  issrg  13914  isdomn  14218
  Copyright terms: Public domain W3C validator