| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fn0g | GIF version | ||
| Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| fn0g | ⊢ 0g Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 5947 | . . 3 ⊢ (℩𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) = (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) | |
| 2 | basfn 13077 | . . . . 5 ⊢ Base Fn V | |
| 3 | vex 2802 | . . . . 5 ⊢ 𝑔 ∈ V | |
| 4 | funfvex 5640 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V) | |
| 5 | 4 | funfni 5419 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V) |
| 6 | 2, 3, 5 | mp2an 426 | . . . 4 ⊢ (Base‘𝑔) ∈ V |
| 7 | riotaexg 5951 | . . . 4 ⊢ ((Base‘𝑔) ∈ V → (℩𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) ∈ V) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (℩𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) ∈ V |
| 9 | 1, 8 | eqeltrri 2303 | . 2 ⊢ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) ∈ V |
| 10 | df-0g 13277 | . 2 ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | |
| 11 | 9, 10 | fnmpti 5448 | 1 ⊢ 0g Fn V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ℩cio 5272 Fn wfn 5309 ‘cfv 5314 ℩crio 5946 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 0gc0g 13275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-riota 5947 df-inn 9099 df-ndx 13021 df-slot 13022 df-base 13024 df-0g 13277 |
| This theorem is referenced by: fngsum 13407 igsumvalx 13408 gsumfzval 13410 gsum0g 13415 prdsidlem 13466 pws0g 13470 0mhm 13505 prdsinvlem 13627 mulgval 13645 mulgfng 13647 issrg 13914 isdomn 14218 |
| Copyright terms: Public domain | W3C validator |