| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fn0g | GIF version | ||
| Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| fn0g | ⊢ 0g Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 5909 | . . 3 ⊢ (℩𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) = (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) | |
| 2 | basfn 12940 | . . . . 5 ⊢ Base Fn V | |
| 3 | vex 2776 | . . . . 5 ⊢ 𝑔 ∈ V | |
| 4 | funfvex 5603 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V) | |
| 5 | 4 | funfni 5382 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V) |
| 6 | 2, 3, 5 | mp2an 426 | . . . 4 ⊢ (Base‘𝑔) ∈ V |
| 7 | riotaexg 5913 | . . . 4 ⊢ ((Base‘𝑔) ∈ V → (℩𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) ∈ V) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (℩𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)) ∈ V |
| 9 | 1, 8 | eqeltrri 2280 | . 2 ⊢ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥))) ∈ V |
| 10 | df-0g 13140 | . 2 ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | |
| 11 | 9, 10 | fnmpti 5411 | 1 ⊢ 0g Fn V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ℩cio 5236 Fn wfn 5272 ‘cfv 5277 ℩crio 5908 (class class class)co 5954 Basecbs 12882 +gcplusg 12959 0gc0g 13138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 df-riota 5909 df-inn 9050 df-ndx 12885 df-slot 12886 df-base 12888 df-0g 13140 |
| This theorem is referenced by: fngsum 13270 igsumvalx 13271 gsumfzval 13273 gsum0g 13278 prdsidlem 13329 pws0g 13333 0mhm 13368 prdsinvlem 13490 mulgval 13508 mulgfng 13510 issrg 13777 isdomn 14081 |
| Copyright terms: Public domain | W3C validator |