ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0g GIF version

Theorem fn0g 13257
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Assertion
Ref Expression
fn0g 0g Fn V

Proof of Theorem fn0g
Dummy variables 𝑒 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-riota 5909 . . 3 (𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) = (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)))
2 basfn 12940 . . . . 5 Base Fn V
3 vex 2776 . . . . 5 𝑔 ∈ V
4 funfvex 5603 . . . . . 6 ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V)
54funfni 5382 . . . . 5 ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V)
62, 3, 5mp2an 426 . . . 4 (Base‘𝑔) ∈ V
7 riotaexg 5913 . . . 4 ((Base‘𝑔) ∈ V → (𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ∈ V)
86, 7ax-mp 5 . . 3 (𝑒 ∈ (Base‘𝑔)∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥)) ∈ V
91, 8eqeltrri 2280 . 2 (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))) ∈ V
10 df-0g 13140 . 2 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
119, 10fnmpti 5411 1 0g Fn V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  cio 5236   Fn wfn 5272  cfv 5277  crio 5908  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  0gc0g 13138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-riota 5909  df-inn 9050  df-ndx 12885  df-slot 12886  df-base 12888  df-0g 13140
This theorem is referenced by:  fngsum  13270  igsumvalx  13271  gsumfzval  13273  gsum0g  13278  prdsidlem  13329  pws0g  13333  0mhm  13368  prdsinvlem  13490  mulgval  13508  mulgfng  13510  issrg  13777  isdomn  14081
  Copyright terms: Public domain W3C validator