ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaexg GIF version

Theorem riotaexg 5626
Description: Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)
Assertion
Ref Expression
riotaexg (𝐴𝑉 → (𝑥𝐴 𝜓) ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem riotaexg
StepHypRef Expression
1 df-riota 5622 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
2 uniexg 4275 . . 3 (𝐴𝑉 𝐴 ∈ V)
3 iotass 5010 . . . . 5 (∀𝑥((𝑥𝐴𝜓) → 𝑥 𝐴) → (℩𝑥(𝑥𝐴𝜓)) ⊆ 𝐴)
4 elssuni 3687 . . . . . 6 (𝑥𝐴𝑥 𝐴)
54adantr 271 . . . . 5 ((𝑥𝐴𝜓) → 𝑥 𝐴)
63, 5mpg 1386 . . . 4 (℩𝑥(𝑥𝐴𝜓)) ⊆ 𝐴
76a1i 9 . . 3 (𝐴𝑉 → (℩𝑥(𝑥𝐴𝜓)) ⊆ 𝐴)
82, 7ssexd 3985 . 2 (𝐴𝑉 → (℩𝑥(𝑥𝐴𝜓)) ∈ V)
91, 8syl5eqel 2175 1 (𝐴𝑉 → (𝑥𝐴 𝜓) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1439  Vcvv 2620  wss 3000   cuni 3659  cio 4991  crio 5621
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-uni 3660  df-iota 4993  df-riota 5622
This theorem is referenced by:  flval  9740  sqrtrval  10494  qnumval  11502  qdenval  11503
  Copyright terms: Public domain W3C validator