| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotaexg | GIF version | ||
| Description: Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.) |
| Ref | Expression |
|---|---|
| riotaexg | ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 5899 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | uniexg 4486 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 3 | iotass 5249 | . . . . 5 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ⊆ ∪ 𝐴) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴) | |
| 4 | elssuni 3878 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
| 5 | 4 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ⊆ ∪ 𝐴) |
| 6 | 3, 5 | mpg 1474 | . . . 4 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴 |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴) |
| 8 | 2, 7 | ssexd 4184 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V) |
| 9 | 1, 8 | eqeltrid 2292 | 1 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 ∪ cuni 3850 ℩cio 5230 ℩crio 5898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-iota 5232 df-riota 5899 |
| This theorem is referenced by: iotaexel 5904 flval 10415 sqrtrval 11311 qnumval 12507 qdenval 12508 grpidvalg 13205 fn0g 13207 grpinvval 13375 grpinvfng 13376 |
| Copyright terms: Public domain | W3C validator |