![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riotaexg | GIF version |
Description: Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.) |
Ref | Expression |
---|---|
riotaexg | ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 5833 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
2 | uniexg 4441 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
3 | iotass 5197 | . . . . 5 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ⊆ ∪ 𝐴) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴) | |
4 | elssuni 3839 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
5 | 4 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ⊆ ∪ 𝐴) |
6 | 3, 5 | mpg 1451 | . . . 4 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴 |
7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴) |
8 | 2, 7 | ssexd 4145 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V) |
9 | 1, 8 | eqeltrid 2264 | 1 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 Vcvv 2739 ⊆ wss 3131 ∪ cuni 3811 ℩cio 5178 ℩crio 5832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-iota 5180 df-riota 5833 |
This theorem is referenced by: flval 10274 sqrtrval 11011 qnumval 12187 qdenval 12188 grpidvalg 12797 fn0g 12799 grpinvval 12921 grpinvfng 12922 |
Copyright terms: Public domain | W3C validator |