![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riotaexg | GIF version |
Description: Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.) |
Ref | Expression |
---|---|
riotaexg | ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 5873 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
2 | uniexg 4470 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
3 | iotass 5232 | . . . . 5 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ⊆ ∪ 𝐴) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴) | |
4 | elssuni 3863 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
5 | 4 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ⊆ ∪ 𝐴) |
6 | 3, 5 | mpg 1462 | . . . 4 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴 |
7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴) |
8 | 2, 7 | ssexd 4169 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V) |
9 | 1, 8 | eqeltrid 2280 | 1 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 ∪ cuni 3835 ℩cio 5213 ℩crio 5872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-iota 5215 df-riota 5873 |
This theorem is referenced by: iotaexel 5878 flval 10341 sqrtrval 11144 qnumval 12323 qdenval 12324 grpidvalg 12956 fn0g 12958 grpinvval 13115 grpinvfng 13116 |
Copyright terms: Public domain | W3C validator |