Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riotaexg | GIF version |
Description: Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.) |
Ref | Expression |
---|---|
riotaexg | ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 5798 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
2 | uniexg 4417 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
3 | iotass 5170 | . . . . 5 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ⊆ ∪ 𝐴) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴) | |
4 | elssuni 3817 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
5 | 4 | adantr 274 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ⊆ ∪ 𝐴) |
6 | 3, 5 | mpg 1439 | . . . 4 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴 |
7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴) |
8 | 2, 7 | ssexd 4122 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V) |
9 | 1, 8 | eqeltrid 2253 | 1 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 ∪ cuni 3789 ℩cio 5151 ℩crio 5797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-iota 5153 df-riota 5798 |
This theorem is referenced by: flval 10207 sqrtrval 10942 qnumval 12117 qdenval 12118 grpidvalg 12604 fn0g 12606 |
Copyright terms: Public domain | W3C validator |