| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotaexg | GIF version | ||
| Description: Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.) |
| Ref | Expression |
|---|---|
| riotaexg | ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 5954 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | uniexg 4530 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 3 | iotass 5296 | . . . . 5 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ⊆ ∪ 𝐴) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴) | |
| 4 | elssuni 3916 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
| 5 | 4 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ⊆ ∪ 𝐴) |
| 6 | 3, 5 | mpg 1497 | . . . 4 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴 |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ⊆ ∪ 𝐴) |
| 8 | 2, 7 | ssexd 4224 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V) |
| 9 | 1, 8 | eqeltrid 2316 | 1 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ∪ cuni 3888 ℩cio 5276 ℩crio 5953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-iota 5278 df-riota 5954 |
| This theorem is referenced by: iotaexel 5959 flval 10492 sqrtrval 11511 qnumval 12707 qdenval 12708 grpidvalg 13406 fn0g 13408 grpinvval 13576 grpinvfng 13577 usgredg2v 16022 |
| Copyright terms: Public domain | W3C validator |