ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaexg GIF version

Theorem riotaexg 5878
Description: Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)
Assertion
Ref Expression
riotaexg (𝐴𝑉 → (𝑥𝐴 𝜓) ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem riotaexg
StepHypRef Expression
1 df-riota 5874 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
2 uniexg 4471 . . 3 (𝐴𝑉 𝐴 ∈ V)
3 iotass 5233 . . . . 5 (∀𝑥((𝑥𝐴𝜓) → 𝑥 𝐴) → (℩𝑥(𝑥𝐴𝜓)) ⊆ 𝐴)
4 elssuni 3864 . . . . . 6 (𝑥𝐴𝑥 𝐴)
54adantr 276 . . . . 5 ((𝑥𝐴𝜓) → 𝑥 𝐴)
63, 5mpg 1462 . . . 4 (℩𝑥(𝑥𝐴𝜓)) ⊆ 𝐴
76a1i 9 . . 3 (𝐴𝑉 → (℩𝑥(𝑥𝐴𝜓)) ⊆ 𝐴)
82, 7ssexd 4170 . 2 (𝐴𝑉 → (℩𝑥(𝑥𝐴𝜓)) ∈ V)
91, 8eqeltrid 2280 1 (𝐴𝑉 → (𝑥𝐴 𝜓) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  Vcvv 2760  wss 3154   cuni 3836  cio 5214  crio 5873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-iota 5216  df-riota 5874
This theorem is referenced by:  iotaexel  5879  flval  10344  sqrtrval  11147  qnumval  12326  qdenval  12327  grpidvalg  12959  fn0g  12961  grpinvval  13118  grpinvfng  13119
  Copyright terms: Public domain W3C validator