![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inteq | GIF version |
Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2673 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
2 | 1 | abbidv 2295 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
3 | dfint2 3848 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
4 | dfint2 3848 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
5 | 2, 3, 4 | 3eqtr4g 2235 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 {cab 2163 ∀wral 2455 ∩ cint 3846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-int 3847 |
This theorem is referenced by: inteqi 3850 inteqd 3851 uniintsnr 3882 rint0 3885 intexr 4152 onintexmid 4574 elreldm 4855 elxp5 5119 1stval2 6159 fundmen 6809 xpsnen 6824 fiintim 6931 elfir 6975 fiinopn 13665 bj-intexr 14821 |
Copyright terms: Public domain | W3C validator |