| Intuitionistic Logic Explorer Theorem List (p. 158 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||||||||
| Theorem | iedgedgg 15701 | An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | edgopval 15702 | The edges of a graph represented as ordered pair. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘〈𝑉, 𝐸〉) = ran 𝐸) | ||||||||||||||||||||||||||||||||||||||
| Theorem | edgov 15703 | The edges of a graph represented as ordered pair, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 15702. The representation ran 𝐸 for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 13-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉Edg𝐸) = ran 𝐸) | ||||||||||||||||||||||||||||||||||||||
| Theorem | edgstruct 15704 | The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘𝐺) = ran 𝐸) | ||||||||||||||||||||||||||||||||||||||
| Theorem | edgiedgbg 15705* | A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐼) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | edg0iedg0g 15706 | There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐼) → (𝐸 = ∅ ↔ 𝐼 = ∅)) | ||||||||||||||||||||||||||||||||||||||
| Syntax | cuhgr 15707 | Extend class notation with undirected hypergraphs. | ||||||||||||||||||||||||||||||||||||
| class UHGraph | ||||||||||||||||||||||||||||||||||||||
| Syntax | cushgr 15708 | Extend class notation with undirected simple hypergraphs. | ||||||||||||||||||||||||||||||||||||
| class USHGraph | ||||||||||||||||||||||||||||||||||||||
| Definition | df-uhgrm 15709* | Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into the set of inhabited subsets of this set. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by Jim Kingdon, 29-Dec-2025.) | ||||||||||||||||||||||||||||||||||||
| ⊢ UHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} | ||||||||||||||||||||||||||||||||||||||
| Definition | df-ushgrm 15710* | Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by Jim Kingdon, 31-Dec-2025.) | ||||||||||||||||||||||||||||||||||||
| ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} | ||||||||||||||||||||||||||||||||||||||
| Theorem | isuhgrm 15711* | The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | isushgrm 15712* | The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸–1-1→{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uhgrfm 15713* | The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ushgrfm 15714* | The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uhgrss 15715 | An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uhgreq12g 15716 | If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐹 = (iEdg‘𝐻) ⇒ ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uhgrfun 15717 | The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uhgrm 15718* | An edge is an inhabited subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑗 𝑗 ∈ (𝐸‘𝐹)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lpvtx 15719 | The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ushgruhgr 15720 | An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) | ||||||||||||||||||||||||||||||||||||||
| Theorem | isuhgropm 15721* | The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uhgr0e 15722 | The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UHGraph) | ||||||||||||||||||||||||||||||||||||||
| Theorem | pw0ss 15723* | There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.) | ||||||||||||||||||||||||||||||||||||
| ⊢ {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ | ||||||||||||||||||||||||||||||||||||||
| Theorem | uhgr0vb 15724 | The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uhgr0 15725 | The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ∅ ∈ UHGraph | ||||||||||||||||||||||||||||||||||||||
| Theorem | uhgrun 15726 | The union 𝑈 of two (undirected) hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a hypergraph with the vertex set 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UHGraph) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uhgrunop 15727 | The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ushgrun 15728 | The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex set 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐺 ∈ USHGraph) & ⊢ (𝜑 → 𝐻 ∈ USHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UHGraph) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ushgrunop 15729 | The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are simple hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐺 ∈ USHGraph) & ⊢ (𝜑 → 𝐻 ∈ USHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) | ||||||||||||||||||||||||||||||||||||||
| Theorem | incistruhgr 15730* | An incidence structure 〈𝑃, 𝐿, 𝐼〉 "where 𝑃 is a set whose elements are called points, 𝐿 is a distinct set whose elements are called lines and 𝐼 ⊆ (𝑃 × 𝐿) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With 𝑃 = (Base‘𝑆) and by defining two new slots for lines and incidence relations and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph)) | ||||||||||||||||||||||||||||||||||||||
This section describes the conventions we use. These conventions often refer to existing mathematical practices, which are discussed in more detail in other references. The following sources lay out how mathematics is developed without the law of the excluded middle. Of course, there are a greater number of sources which assume excluded middle and most of what is in them applies here too (especially in a treatment such as ours which is built on first-order logic and set theory, rather than, say, type theory). Studying how a topic is treated in the Metamath Proof Explorer and the references therein is often a good place to start (and is easy to compare with the Intuitionistic Logic Explorer). The textbooks provide a motivation for what we are doing, whereas Metamath lets you see in detail all hidden and implicit steps. Most standard theorems are accompanied by citations. Some closely followed texts include the following:
| ||||||||||||||||||||||||||||||||||||||
| Theorem | conventions 15731 |
Unless there is a reason to diverge, we follow the conventions of the
Metamath Proof Explorer (MPE, set.mm). This list of conventions is
intended to be read in conjunction with the corresponding conventions in
the Metamath Proof Explorer, and only the differences are described
below.
Label naming conventions Here are a few of the label naming conventions:
The following table shows some commonly-used abbreviations in labels which are not found in the Metamath Proof Explorer, in alphabetical order. For each abbreviation we provide a mnenomic to help you remember it, the source theorem/assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. For the "g" abbreviation, this is related to the set.mm usage, in which "is a set" conditions are converted from hypotheses to antecedents, but is also used where "is a set" conditions are added relative to similar set.mm theorems.
(Contributed by Jim Kingdon, 24-Feb-2020.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-or 15732 | Example for ax-io 711. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (2 = 3 ∨ 4 = 4) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-an 15733 | Example for ax-ia1 106. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (2 = 2 ∧ 3 = 3) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 1kp2ke3k 15734 |
Example for df-dec 9512, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision." The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted. This proof heavily relies on the decimal constructor df-dec 9512 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (;;;1000 + ;;;2000) = ;;;3000 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-fl 15735 | Example for df-fl 10420. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-ceil 15736 | Example for df-ceil 10421. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-exp 15737 | Example for df-exp 10691. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-fac 15738 | Example for df-fac 10878. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (!‘5) = ;;120 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-bc 15739 | Example for df-bc 10900. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (5C3) = ;10 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-dvds 15740 | Example for df-dvds 12143: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 3 ∥ 6 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-gcd 15741 | Example for df-gcd 12319. (Contributed by AV, 5-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (-6 gcd 9) = 3 | ||||||||||||||||||||||||||||||||||||||
| Theorem | mathbox 15742 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm. Guidelines: Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details. (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnsn 15743 | As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ¬ 𝜓) ↔ (¬ ¬ 𝜑 → ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnor 15744 | Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnim 15745 | The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnan 15746 | The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnclavius 15747 | Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((¬ 𝜑 → 𝜑) → ¬ ¬ 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-imnimnn 15748 | If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 15747 as its last step. (Contributed by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (¬ 𝜑 → 𝜓) ⇒ ⊢ ¬ ¬ 𝜓 | ||||||||||||||||||||||||||||||||||||||
Some of the following theorems, like bj-sttru 15750 or bj-stfal 15752 could be deduced from their analogues for decidability, but stability is not provable from decidability in minimal calculus, so direct proofs have their interest. | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-trst 15749 | A provable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-sttru 15750 | The true truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ STAB ⊤ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-fast 15751 | A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ 𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stfal 15752 | The false truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ STAB ⊥ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnst 15753 | Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 16000 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in ( → , ¬ ) -intuitionistic calculus with definitions (uses of ax-ia1 106, ax-ia2 107, ax-ia3 108 are via sylibr 134, necessary for definition unpackaging), and in ( → , ↔ , ¬ )-intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ¬ ¬ STAB 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnbist 15754 | If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if 𝜑 is a classical tautology, then ¬ ¬ 𝜑 is an intuitionistic tautology. Therefore, if 𝜑 is a classical tautology, then 𝜑 is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 15767). (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ 𝜑 → (STAB 𝜑 ↔ 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stst 15755 | Stability of a proposition is stable if and only if that proposition is stable. STAB is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB STAB 𝜑 ↔ STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stim 15756 | A conjunction with a stable consequent is stable. See stabnot 835 for negation , bj-stan 15757 for conjunction , and bj-stal 15759 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜓 → STAB (𝜑 → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stan 15757 | The conjunction of two stable formulas is stable. See bj-stim 15756 for implication, stabnot 835 for negation, and bj-stal 15759 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((STAB 𝜑 ∧ STAB 𝜓) → STAB (𝜑 ∧ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stand 15758 | The conjunction of two stable formulas is stable. Deduction form of bj-stan 15757. Its proof is shorter (when counting all steps, including syntactic steps), so one could prove it first and then bj-stan 15757 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → STAB 𝜓) & ⊢ (𝜑 → STAB 𝜒) ⇒ ⊢ (𝜑 → STAB (𝜓 ∧ 𝜒)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stal 15759 | The universal quantification of a stable formula is stable. See bj-stim 15756 for implication, stabnot 835 for negation, and bj-stan 15757 for conjunction. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥STAB 𝜑 → STAB ∀𝑥𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-pm2.18st 15760 | Clavius law for stable formulas. See pm2.18dc 857. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜑) → 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-con1st 15761 | Contraposition when the antecedent is a negated stable proposition. See con1dc 858. (Contributed by BJ, 11-Nov-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-trdc 15762 | A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dctru 15763 | The true truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ DECID ⊤ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-fadc 15764 | A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ 𝜑 → DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcfal 15765 | The false truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ DECID ⊥ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcstab 15766 | A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (DECID 𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnbidc 15767 | If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 15754. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ 𝜑 → (DECID 𝜑 ↔ 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nndcALT 15768 | Alternate proof of nndc 853. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ¬ ¬ DECID 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcdc 15769 | Decidability of a proposition is decidable if and only if that proposition is decidable. DECID is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (DECID DECID 𝜑 ↔ DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stdc 15770 | Decidability of a proposition is stable if and only if that proposition is decidable. In particular, the assumption that every formula is stable implies that every formula is decidable, hence classical logic. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB DECID 𝜑 ↔ DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcst 15771 | Stability of a proposition is decidable if and only if that proposition is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (DECID STAB 𝜑 ↔ STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-ex 15772* | Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1622 and 19.9ht 1665 or 19.23ht 1521). (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∃𝑥𝜑 → 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-hbalt 15773 | Closed form of hbal 1501 (copied from set.mm). (Contributed by BJ, 2-May-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nfalt 15774 | Closed form of nfal 1600 (copied from set.mm). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | spimd 15775 | Deduction form of spim 1762. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2spim 15776* | Double substitution, as in spim 1762. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑧𝜒 & ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑧∀𝑥𝜓 → 𝜒) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ch2var 15777* | Implicit substitution of 𝑦 for 𝑥 and 𝑡 for 𝑧 into a theorem. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑧𝜓 & ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ch2varv 15778* | Version of ch2var 15777 with nonfreeness hypotheses replaced with disjoint variable conditions. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-exlimmp 15779 | Lemma for bj-vtoclgf 15786. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜒 → 𝜑) ⇒ ⊢ (∀𝑥(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜒 → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-exlimmpi 15780 | Lemma for bj-vtoclgf 15786. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜒 → 𝜑) & ⊢ (𝜒 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥𝜒 → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-sbimedh 15781 | A strengthening of sbiedh 1811 (same proof). (Contributed by BJ, 16-Dec-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → 𝜒)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-sbimeh 15782 | A strengthening of sbieh 1814 (same proof). (Contributed by BJ, 16-Dec-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-sbime 15783 | A strengthening of sbie 1815 (same proof). (Contributed by BJ, 16-Dec-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-el2oss1o 15784 | Shorter proof of el2oss1o 6536 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) | ||||||||||||||||||||||||||||||||||||||
Various utility theorems using FOL and extensionality. | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-vtoclgft 15785 | Weakening two hypotheses of vtoclgf 2832. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝑉 → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-vtoclgf 15786 | Weakening two hypotheses of vtoclgf 2832. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → 𝜑) & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elabgf0 15787 | Lemma for elabgf 2916. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elabgft1 15788 | One implication of elabgf 2916, in closed form. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elabgf1 15789 | One implication of elabgf 2916. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elabgf2 15790 | One implication of elabgf 2916. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elabf1 15791* | One implication of elabf 2917. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elabf2 15792* | One implication of elabf 2917. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) ⇒ ⊢ (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elab1 15793* | One implication of elab 2918. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elab2a 15794* | One implication of elab 2918. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) ⇒ ⊢ (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elabg2 15795* | One implication of elabg 2920. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-rspgt 15796 | Restricted specialization, generalized. Weakens a hypothesis of rspccv 2875 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-rspg 15797 | Restricted specialization, generalized. Weakens a hypothesis of rspccv 2875 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | cbvrald 15798* | Rule used to change bound variables, using implicit substitution. (Contributed by BJ, 22-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐴 𝜒)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-intabssel 15799 | Version of intss1 3902 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-intabssel1 15800 | Version of intss1 3902 using a class abstraction and implicit substitution. Closed form of intmin3 3914. (Contributed by BJ, 29-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴)) | ||||||||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |