HomeHome Intuitionistic Logic Explorer
Theorem List (p. 158 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15701-15800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlgscl 15701 The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
 
Theoremlgsle1 15702 The Legendre symbol has absolute value less than or equal to 1. Together with lgscl 15701 this implies that it takes values in {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ≤ 1)
 
Theoremlgsval2 15703 The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime 2). (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 /L 𝑃) = if(𝑃 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)))
 
Theoremlgs2 15704 The Legendre symbol at 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
(𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
 
Theoremlgsval3 15705 The Legendre symbol at an odd prime (this is the traditional domain of the Legendre symbol). (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
 
Theoremlgsvalmod 15706 The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
 
Theoremlgsval4 15707* Restate lgsval 15691 for nonzero 𝑁, where the function 𝐹 has been abbreviated into a self-referential expression taking the value of /L on the primes as given. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
 
Theoremlgsfcl3 15708* Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
 
Theoremlgsval4a 15709* Same as lgsval4 15707 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))       ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁))
 
Theoremlgscl1 15710 The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ {-1, 0, 1})
 
Theoremlgsneg 15711 The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)))
 
Theoremlgsneg1 15712 The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℕ0𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁))
 
Theoremlgsmod 15713 The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
 
Theoremlgsdilem 15714 Lemma for lgsdi 15724 and lgsdir 15722: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
 
Theoremlgsdir2lem1 15715 Lemma for lgsdir2 15720. (Contributed by Mario Carneiro, 4-Feb-2015.)
(((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5))
 
Theoremlgsdir2lem2 15716 Lemma for lgsdir2 15720. (Contributed by Mario Carneiro, 4-Feb-2015.)
(𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))    &   𝑀 = (𝐾 + 1)    &   𝑁 = (𝑀 + 1)    &   𝑁𝑆       (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))
 
Theoremlgsdir2lem3 15717 Lemma for lgsdir2 15720. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
 
Theoremlgsdir2lem4 15718 Lemma for lgsdir2 15720. (Contributed by Mario Carneiro, 4-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
 
Theoremlgsdir2lem5 15719 Lemma for lgsdir2 15720. (Contributed by Mario Carneiro, 4-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
 
Theoremlgsdir2 15720 The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
 
Theoremlgsdirprm 15721 The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
 
Theoremlgsdir 15722 The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
 
Theoremlgsdilem2 15723* Lemma for lgsdi 15724. (Contributed by Mario Carneiro, 4-Feb-2015.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀 ≠ 0)    &   (𝜑𝑁 ≠ 0)    &   𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))       (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
 
Theoremlgsdi 15724 The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that 𝑀 and 𝑁 are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
(((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
 
Theoremlgsne0 15725 The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
 
Theoremlgsabs1 15726 The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1))
 
Theoremlgssq 15727 The Legendre symbol at a square is equal to 1. Together with lgsmod 15713 this implies that the Legendre symbol takes value 1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1)
 
Theoremlgssq2 15728 The Legendre symbol at a square is equal to 1. (Contributed by Mario Carneiro, 5-Feb-2015.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁↑2)) = 1)
 
Theoremlgsprme0 15729 The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
 
Theorem1lgs 15730 The Legendre symbol at 1. See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.)
(𝑁 ∈ ℤ → (1 /L 𝑁) = 1)
 
Theoremlgs1 15731 The Legendre symbol at 1. See definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 28-Apr-2016.)
(𝐴 ∈ ℤ → (𝐴 /L 1) = 1)
 
Theoremlgsmodeq 15732 The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. Theorem 9.9(c) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → (𝐴 /L 𝑁) = (𝐵 /L 𝑁)))
 
Theoremlgsmulsqcoprm 15733 The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁))
 
Theoremlgsdirnn0 15734 Variation on lgsdir 15722 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
 
Theoremlgsdinn0 15735 Variation on lgsdi 15724 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.)
((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
 
11.3.5  Gauss' Lemma

Gauss' Lemma is valid for any integer not dividing the given prime number. In the following, only the special case for 2 (not dividing any odd prime) is proven, see gausslemma2d 15756. The general case is still to prove.

 
Theoremgausslemma2dlem0a 15736 Auxiliary lemma 1 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))       (𝜑𝑃 ∈ ℕ)
 
Theoremgausslemma2dlem0b 15737 Auxiliary lemma 2 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)       (𝜑𝐻 ∈ ℕ)
 
Theoremgausslemma2dlem0c 15738 Auxiliary lemma 3 for gausslemma2d 15756. (Contributed by AV, 13-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)       (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
 
Theoremgausslemma2dlem0d 15739 Auxiliary lemma 4 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑𝑀 ∈ ℕ0)
 
Theoremgausslemma2dlem0e 15740 Auxiliary lemma 5 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑 → (𝑀 · 2) < (𝑃 / 2))
 
Theoremgausslemma2dlem0f 15741 Auxiliary lemma 6 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝐻 = ((𝑃 − 1) / 2)       (𝜑 → (𝑀 + 1) ≤ 𝐻)
 
Theoremgausslemma2dlem0g 15742 Auxiliary lemma 7 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝐻 = ((𝑃 − 1) / 2)       (𝜑𝑀𝐻)
 
Theoremgausslemma2dlem0h 15743 Auxiliary lemma 8 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑁 = (𝐻𝑀)       (𝜑𝑁 ∈ ℕ0)
 
Theoremgausslemma2dlem0i 15744 Auxiliary lemma 9 for gausslemma2d 15756. (Contributed by AV, 14-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑁 = (𝐻𝑀)       (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
 
Theoremgausslemma2dlem1a 15745* Lemma for gausslemma2dlem1 15748. (Contributed by AV, 1-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))       (𝜑 → ran 𝑅 = (1...𝐻))
 
Theoremgausslemma2dlem1cl 15746 Lemma for gausslemma2dlem1 15748. Closure of the body of the definition of 𝑅. (Contributed by Jim Kingdon, 10-Aug-2025.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   (𝜑𝐴 ∈ (1...𝐻))       (𝜑 → if((𝐴 · 2) < (𝑃 / 2), (𝐴 · 2), (𝑃 − (𝐴 · 2))) ∈ ℤ)
 
Theoremgausslemma2dlem1f1o 15747* Lemma for gausslemma2dlem1 15748. (Contributed by Jim Kingdon, 9-Aug-2025.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))       (𝜑𝑅:(1...𝐻)–1-1-onto→(1...𝐻))
 
Theoremgausslemma2dlem1 15748* Lemma 1 for gausslemma2d 15756. (Contributed by AV, 5-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))       (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
 
Theoremgausslemma2dlem2 15749* Lemma 2 for gausslemma2d 15756. (Contributed by AV, 4-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
 
Theoremgausslemma2dlem3 15750* Lemma 3 for gausslemma2d 15756. (Contributed by AV, 4-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
 
Theoremgausslemma2dlem4 15751* Lemma 4 for gausslemma2d 15756. (Contributed by AV, 16-Jun-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
 
Theoremgausslemma2dlem5a 15752* Lemma for gausslemma2dlem5 15753. (Contributed by AV, 8-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))       (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
 
Theoremgausslemma2dlem5 15753* Lemma 5 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝑁 = (𝐻𝑀)       (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
 
Theoremgausslemma2dlem6 15754* Lemma 6 for gausslemma2d 15756. (Contributed by AV, 16-Jun-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝑁 = (𝐻𝑀)       (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
 
Theoremgausslemma2dlem7 15755* Lemma 7 for gausslemma2d 15756. (Contributed by AV, 13-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝑁 = (𝐻𝑀)       (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
 
Theoremgausslemma2d 15756* Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   𝐻 = ((𝑃 − 1) / 2)    &   𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))    &   𝑀 = (⌊‘(𝑃 / 4))    &   𝑁 = (𝐻𝑀)       (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
 
11.3.6  Quadratic reciprocity
 
Theoremlgseisenlem1 15757* Lemma for lgseisen 15761. If 𝑅(𝑢) = (𝑄 · 𝑢) mod 𝑃 and 𝑀(𝑢) = (-1↑𝑅(𝑢)) · 𝑅(𝑢), then for any even 1 ≤ 𝑢𝑃 − 1, 𝑀(𝑢) is also an even integer 1 ≤ 𝑀(𝑢) ≤ 𝑃 − 1. To simplify these statements, we divide all the even numbers by 2, so that it becomes the statement that 𝑀(𝑥 / 2) = (-1↑𝑅(𝑥 / 2)) · 𝑅(𝑥 / 2) / 2 is an integer between 1 and (𝑃 − 1) / 2. (Contributed by Mario Carneiro, 17-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)    &   𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))       (𝜑𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
 
Theoremlgseisenlem2 15758* Lemma for lgseisen 15761. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 17-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)    &   𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))    &   𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)       (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2)))
 
Theoremlgseisenlem3 15759* Lemma for lgseisen 15761. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)    &   𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))    &   𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)    &   𝑌 = (ℤ/nℤ‘𝑃)    &   𝐺 = (mulGrp‘𝑌)    &   𝐿 = (ℤRHom‘𝑌)       (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
 
Theoremlgseisenlem4 15760* Lemma for lgseisen 15761. (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)    &   𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))    &   𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)    &   𝑌 = (ℤ/nℤ‘𝑃)    &   𝐺 = (mulGrp‘𝑌)    &   𝐿 = (ℤRHom‘𝑌)       (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
 
Theoremlgseisen 15761* Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)       (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
 
Theoremlgsquadlemsfi 15762* Lemma for lgsquad 15767. 𝑆 is finite. (Contributed by Jim Kingdon, 16-Sep-2025.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑀 = ((𝑃 − 1) / 2)    &   𝑁 = ((𝑄 − 1) / 2)    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}       (𝜑𝑆 ∈ Fin)
 
Theoremlgsquadlemofi 15763* Lemma for lgsquad 15767. There are finitely many members of 𝑆 with odd first part. (Contributed by Jim Kingdon, 16-Sep-2025.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑀 = ((𝑃 − 1) / 2)    &   𝑁 = ((𝑄 − 1) / 2)    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}       (𝜑 → {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin)
 
Theoremlgsquadlem1 15764* Lemma for lgsquad 15767. Count the members of 𝑆 with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑀 = ((𝑃 − 1) / 2)    &   𝑁 = ((𝑄 − 1) / 2)    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}       (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
 
Theoremlgsquadlem2 15765* Lemma for lgsquad 15767. Count the members of 𝑆 with even coordinates, and combine with lgsquadlem1 15764 to get the total count of lattice points in 𝑆 (up to parity). (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑀 = ((𝑃 − 1) / 2)    &   𝑁 = ((𝑄 − 1) / 2)    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}       (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆)))
 
Theoremlgsquadlem3 15766* Lemma for lgsquad 15767. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝜑𝑃 ∈ (ℙ ∖ {2}))    &   (𝜑𝑄 ∈ (ℙ ∖ {2}))    &   (𝜑𝑃𝑄)    &   𝑀 = ((𝑃 − 1) / 2)    &   𝑁 = ((𝑄 − 1) / 2)    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}       (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁)))
 
Theoremlgsquad 15767 The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If 𝑃 and 𝑄 are distinct odd primes, then the product of the Legendre symbols (𝑃 /L 𝑄) and (𝑄 /L 𝑃) is the parity of ((𝑃 − 1) / 2) · ((𝑄 − 1) / 2). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.)
((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2))))
 
Theoremlgsquad2lem1 15768 Lemma for lgsquad2 15770. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑀)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑁)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   (𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑 → (𝐴 · 𝐵) = 𝑀)    &   (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))))    &   (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2))))       (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
 
Theoremlgsquad2lem2 15769* Lemma for lgsquad2 15770. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑀)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑁)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))    &   (𝜓 ↔ ∀𝑥 ∈ (1...𝑘)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))       (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
 
Theoremlgsquad2 15770 Extend lgsquad 15767 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑀)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑁)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)       (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
 
Theoremlgsquad3 15771 Extend lgsquad2 15770 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.)
(((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
 
Theoremm1lgs 15772 The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
 
Theorem2lgslem1a1 15773* Lemma 1 for 2lgslem1a 15775. (Contributed by AV, 16-Jun-2021.)
((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
 
Theorem2lgslem1a2 15774 Lemma 2 for 2lgslem1a 15775. (Contributed by AV, 18-Jun-2021.)
((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))
 
Theorem2lgslem1a 15775* Lemma 1 for 2lgslem1 15778. (Contributed by AV, 18-Jun-2021.)
((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
 
Theorem2lgslem1b 15776* Lemma 2 for 2lgslem1 15778. (Contributed by AV, 18-Jun-2021.)
𝐼 = (𝐴...𝐵)    &   𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))       𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
 
Theorem2lgslem1c 15777 Lemma 3 for 2lgslem1 15778. (Contributed by AV, 19-Jun-2021.)
((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
 
Theorem2lgslem1 15778* Lemma 1 for 2lgs 15791. (Contributed by AV, 19-Jun-2021.)
((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
 
Theorem2lgslem2 15779 Lemma 2 for 2lgs 15791. (Contributed by AV, 20-Jun-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ)
 
Theorem2lgslem3a 15780 Lemma for 2lgslem3a1 15784. (Contributed by AV, 14-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))
 
Theorem2lgslem3b 15781 Lemma for 2lgslem3b1 15785. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1))
 
Theorem2lgslem3c 15782 Lemma for 2lgslem3c1 15786. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 5)) → 𝑁 = ((2 · 𝐾) + 1))
 
Theorem2lgslem3d 15783 Lemma for 2lgslem3d1 15787. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2))
 
Theorem2lgslem3a1 15784 Lemma 1 for 2lgslem3 15788. (Contributed by AV, 15-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)
 
Theorem2lgslem3b1 15785 Lemma 2 for 2lgslem3 15788. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
 
Theorem2lgslem3c1 15786 Lemma 3 for 2lgslem3 15788. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)
 
Theorem2lgslem3d1 15787 Lemma 4 for 2lgslem3 15788. (Contributed by AV, 15-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
 
Theorem2lgslem3 15788 Lemma 3 for 2lgs 15791. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
 
Theorem2lgs2 15789 The Legendre symbol for 2 at 2 is 0. (Contributed by AV, 20-Jun-2021.)
(2 /L 2) = 0
 
Theorem2lgslem4 15790 Lemma 4 for 2lgs 15791: special case of 2lgs 15791 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.)
((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
 
Theorem2lgs 15791 The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 15704) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
(𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
 
Theorem2lgsoddprmlem1 15792 Lemma 1 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8)))
 
Theorem2lgsoddprmlem2 15793 Lemma 2 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
 
Theorem2lgsoddprmlem3a 15794 Lemma 1 for 2lgsoddprmlem3 15798. (Contributed by AV, 20-Jul-2021.)
(((1↑2) − 1) / 8) = 0
 
Theorem2lgsoddprmlem3b 15795 Lemma 2 for 2lgsoddprmlem3 15798. (Contributed by AV, 20-Jul-2021.)
(((3↑2) − 1) / 8) = 1
 
Theorem2lgsoddprmlem3c 15796 Lemma 3 for 2lgsoddprmlem3 15798. (Contributed by AV, 20-Jul-2021.)
(((5↑2) − 1) / 8) = 3
 
Theorem2lgsoddprmlem3d 15797 Lemma 4 for 2lgsoddprmlem3 15798. (Contributed by AV, 20-Jul-2021.)
(((7↑2) − 1) / 8) = (2 · 3)
 
Theorem2lgsoddprmlem3 15798 Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
 
Theorem2lgsoddprmlem4 15799 Lemma 4 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ (𝑁 mod 8) ∈ {1, 7}))
 
Theorem2lgsoddprm 15800 The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
(𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >