| Intuitionistic Logic Explorer Theorem List (p. 158 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lgscl 15701 | The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | ||
| Theorem | lgsle1 15702 | The Legendre symbol has absolute value less than or equal to 1. Together with lgscl 15701 this implies that it takes values in {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ≤ 1) | ||
| Theorem | lgsval2 15703 | The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime 2). (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 /L 𝑃) = if(𝑃 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))) | ||
| Theorem | lgs2 15704 | The Legendre symbol at 2. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))) | ||
| Theorem | lgsval3 15705 | The Legendre symbol at an odd prime (this is the traditional domain of the Legendre symbol). (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)) | ||
| Theorem | lgsvalmod 15706 | The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) | ||
| Theorem | lgsval4 15707* | Restate lgsval 15691 for nonzero 𝑁, where the function 𝐹 has been abbreviated into a self-referential expression taking the value of /L on the primes as given. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) | ||
| Theorem | lgsfcl3 15708* | Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) | ||
| Theorem | lgsval4a 15709* | Same as lgsval4 15707 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁)) | ||
| Theorem | lgscl1 15710 | The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ {-1, 0, 1}) | ||
| Theorem | lgsneg 15711 | The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) | ||
| Theorem | lgsneg1 15712 | The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) | ||
| Theorem | lgsmod 15713 | The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁)) | ||
| Theorem | lgsdilem 15714 | Lemma for lgsdi 15724 and lgsdir 15722: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))) | ||
| Theorem | lgsdir2lem1 15715 | Lemma for lgsdir2 15720. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5)) | ||
| Theorem | lgsdir2lem2 15716 | Lemma for lgsdir2 15720. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆))) & ⊢ 𝑀 = (𝐾 + 1) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑁 ∈ 𝑆 ⇒ ⊢ (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆))) | ||
| Theorem | lgsdir2lem3 15717 | Lemma for lgsdir2 15720. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})) | ||
| Theorem | lgsdir2lem4 15718 | Lemma for lgsdir2 15720. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7})) | ||
| Theorem | lgsdir2lem5 15719 | Lemma for lgsdir2 15720. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7}) | ||
| Theorem | lgsdir2 15720 | The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2))) | ||
| Theorem | lgsdirprm 15721 | The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) | ||
| Theorem | lgsdir 15722 | The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) | ||
| Theorem | lgsdilem2 15723* | Lemma for lgsdi 15724. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)) ⇒ ⊢ (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁)))) | ||
| Theorem | lgsdi 15724 | The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that 𝑀 and 𝑁 are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) | ||
| Theorem | lgsne0 15725 | The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) | ||
| Theorem | lgsabs1 15726 | The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) | ||
| Theorem | lgssq 15727 | The Legendre symbol at a square is equal to 1. Together with lgsmod 15713 this implies that the Legendre symbol takes value 1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1) | ||
| Theorem | lgssq2 15728 | The Legendre symbol at a square is equal to 1. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁↑2)) = 1) | ||
| Theorem | lgsprme0 15729 | The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) | ||
| Theorem | 1lgs 15730 | The Legendre symbol at 1. See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ (𝑁 ∈ ℤ → (1 /L 𝑁) = 1) | ||
| Theorem | lgs1 15731 | The Legendre symbol at 1. See definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴 /L 1) = 1) | ||
| Theorem | lgsmodeq 15732 | The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. Theorem 9.9(c) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → (𝐴 /L 𝑁) = (𝐵 /L 𝑁))) | ||
| Theorem | lgsmulsqcoprm 15733 | The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁)) | ||
| Theorem | lgsdirnn0 15734 | Variation on lgsdir 15722 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) | ||
| Theorem | lgsdinn0 15735 | Variation on lgsdi 15724 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) | ||
Gauss' Lemma is valid for any integer not dividing the given prime number. In the following, only the special case for 2 (not dividing any odd prime) is proven, see gausslemma2d 15756. The general case is still to prove. | ||
| Theorem | gausslemma2dlem0a 15736 | Auxiliary lemma 1 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) ⇒ ⊢ (𝜑 → 𝑃 ∈ ℕ) | ||
| Theorem | gausslemma2dlem0b 15737 | Auxiliary lemma 2 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) ⇒ ⊢ (𝜑 → 𝐻 ∈ ℕ) | ||
| Theorem | gausslemma2dlem0c 15738 | Auxiliary lemma 3 for gausslemma2d 15756. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) ⇒ ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) | ||
| Theorem | gausslemma2dlem0d 15739 | Auxiliary lemma 4 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → 𝑀 ∈ ℕ0) | ||
| Theorem | gausslemma2dlem0e 15740 | Auxiliary lemma 5 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → (𝑀 · 2) < (𝑃 / 2)) | ||
| Theorem | gausslemma2dlem0f 15741 | Auxiliary lemma 6 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) ⇒ ⊢ (𝜑 → (𝑀 + 1) ≤ 𝐻) | ||
| Theorem | gausslemma2dlem0g 15742 | Auxiliary lemma 7 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) ⇒ ⊢ (𝜑 → 𝑀 ≤ 𝐻) | ||
| Theorem | gausslemma2dlem0h 15743 | Auxiliary lemma 8 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ0) | ||
| Theorem | gausslemma2dlem0i 15744 | Auxiliary lemma 9 for gausslemma2d 15756. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))) | ||
| Theorem | gausslemma2dlem1a 15745* | Lemma for gausslemma2dlem1 15748. (Contributed by AV, 1-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → ran 𝑅 = (1...𝐻)) | ||
| Theorem | gausslemma2dlem1cl 15746 | Lemma for gausslemma2dlem1 15748. Closure of the body of the definition of 𝑅. (Contributed by Jim Kingdon, 10-Aug-2025.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ (𝜑 → 𝐴 ∈ (1...𝐻)) ⇒ ⊢ (𝜑 → if((𝐴 · 2) < (𝑃 / 2), (𝐴 · 2), (𝑃 − (𝐴 · 2))) ∈ ℤ) | ||
| Theorem | gausslemma2dlem1f1o 15747* | Lemma for gausslemma2dlem1 15748. (Contributed by Jim Kingdon, 9-Aug-2025.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) | ||
| Theorem | gausslemma2dlem1 15748* | Lemma 1 for gausslemma2d 15756. (Contributed by AV, 5-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) | ||
| Theorem | gausslemma2dlem2 15749* | Lemma 2 for gausslemma2d 15756. (Contributed by AV, 4-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = (𝑘 · 2)) | ||
| Theorem | gausslemma2dlem3 15750* | Lemma 3 for gausslemma2d 15756. (Contributed by AV, 4-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) | ||
| Theorem | gausslemma2dlem4 15751* | Lemma 4 for gausslemma2d 15756. (Contributed by AV, 16-Jun-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) | ||
| Theorem | gausslemma2dlem5a 15752* | Lemma for gausslemma2dlem5 15753. (Contributed by AV, 8-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) | ||
| Theorem | gausslemma2dlem5 15753* | Lemma 5 for gausslemma2d 15756. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) | ||
| Theorem | gausslemma2dlem6 15754* | Lemma 6 for gausslemma2d 15756. (Contributed by AV, 16-Jun-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) | ||
| Theorem | gausslemma2dlem7 15755* | Lemma 7 for gausslemma2d 15756. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) | ||
| Theorem | gausslemma2d 15756* | Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (2 /L 𝑃) = (-1↑𝑁)) | ||
| Theorem | lgseisenlem1 15757* | Lemma for lgseisen 15761. If 𝑅(𝑢) = (𝑄 · 𝑢) mod 𝑃 and 𝑀(𝑢) = (-1↑𝑅(𝑢)) · 𝑅(𝑢), then for any even 1 ≤ 𝑢 ≤ 𝑃 − 1, 𝑀(𝑢) is also an even integer 1 ≤ 𝑀(𝑢) ≤ 𝑃 − 1. To simplify these statements, we divide all the even numbers by 2, so that it becomes the statement that 𝑀(𝑥 / 2) = (-1↑𝑅(𝑥 / 2)) · 𝑅(𝑥 / 2) / 2 is an integer between 1 and (𝑃 − 1) / 2. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) ⇒ ⊢ (𝜑 → 𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2))) | ||
| Theorem | lgseisenlem2 15758* | Lemma for lgseisen 15761. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) ⇒ ⊢ (𝜑 → 𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2))) | ||
| Theorem | lgseisenlem3 15759* | Lemma for lgseisen 15761. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) & ⊢ 𝑌 = (ℤ/nℤ‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r‘𝑌)) | ||
| Theorem | lgseisenlem4 15760* | Lemma for lgseisen 15761. (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) & ⊢ 𝑌 = (ℤ/nℤ‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) | ||
| Theorem | lgseisen 15761* | Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) | ||
| Theorem | lgsquadlemsfi 15762* | Lemma for lgsquad 15767. 𝑆 is finite. (Contributed by Jim Kingdon, 16-Sep-2025.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) | ||
| Theorem | lgsquadlemofi 15763* | Lemma for lgsquad 15767. There are finitely many members of 𝑆 with odd first part. (Contributed by Jim Kingdon, 16-Sep-2025.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st ‘𝑧)} ∈ Fin) | ||
| Theorem | lgsquadlem1 15764* | Lemma for lgsquad 15767. Count the members of 𝑆 with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st ‘𝑧)}))) | ||
| Theorem | lgsquadlem2 15765* | Lemma for lgsquad 15767. Count the members of 𝑆 with even coordinates, and combine with lgsquadlem1 15764 to get the total count of lattice points in 𝑆 (up to parity). (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆))) | ||
| Theorem | lgsquadlem3 15766* | Lemma for lgsquad 15767. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁))) | ||
| Theorem | lgsquad 15767 | The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If 𝑃 and 𝑄 are distinct odd primes, then the product of the Legendre symbols (𝑃 /L 𝑄) and (𝑄 /L 𝑃) is the parity of ((𝑃 − 1) / 2) · ((𝑄 − 1) / 2). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2)))) | ||
| Theorem | lgsquad2lem1 15768 | Lemma for lgsquad2 15770. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 𝑀) & ⊢ (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)))) & ⊢ (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||
| Theorem | lgsquad2lem2 15769* | Lemma for lgsquad2 15770. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) & ⊢ (𝜓 ↔ ∀𝑥 ∈ (1...𝑘)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||
| Theorem | lgsquad2 15770 | Extend lgsquad 15767 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||
| Theorem | lgsquad3 15771 | Extend lgsquad2 15770 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀))) | ||
| Theorem | m1lgs 15772 | The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1)) | ||
| Theorem | 2lgslem1a1 15773* | Lemma 1 for 2lgslem1a 15775. (Contributed by AV, 16-Jun-2021.) |
| ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃)) | ||
| Theorem | 2lgslem1a2 15774 | Lemma 2 for 2lgslem1a 15775. (Contributed by AV, 18-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2))) | ||
| Theorem | 2lgslem1a 15775* | Lemma 1 for 2lgslem1 15778. (Contributed by AV, 18-Jun-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}) | ||
| Theorem | 2lgslem1b 15776* | Lemma 2 for 2lgslem1 15778. (Contributed by AV, 18-Jun-2021.) |
| ⊢ 𝐼 = (𝐴...𝐵) & ⊢ 𝐹 = (𝑗 ∈ 𝐼 ↦ (𝑗 · 2)) ⇒ ⊢ 𝐹:𝐼–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} | ||
| Theorem | 2lgslem1c 15777 | Lemma 3 for 2lgslem1 15778. (Contributed by AV, 19-Jun-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)) | ||
| Theorem | 2lgslem1 15778* | Lemma 1 for 2lgs 15791. (Contributed by AV, 19-Jun-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) | ||
| Theorem | 2lgslem2 15779 | Lemma 2 for 2lgs 15791. (Contributed by AV, 20-Jun-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ) | ||
| Theorem | 2lgslem3a 15780 | Lemma for 2lgslem3a1 15784. (Contributed by AV, 14-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾)) | ||
| Theorem | 2lgslem3b 15781 | Lemma for 2lgslem3b1 15785. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1)) | ||
| Theorem | 2lgslem3c 15782 | Lemma for 2lgslem3c1 15786. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 5)) → 𝑁 = ((2 · 𝐾) + 1)) | ||
| Theorem | 2lgslem3d 15783 | Lemma for 2lgslem3d1 15787. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2)) | ||
| Theorem | 2lgslem3a1 15784 | Lemma 1 for 2lgslem3 15788. (Contributed by AV, 15-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) | ||
| Theorem | 2lgslem3b1 15785 | Lemma 2 for 2lgslem3 15788. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) | ||
| Theorem | 2lgslem3c1 15786 | Lemma 3 for 2lgslem3 15788. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1) | ||
| Theorem | 2lgslem3d1 15787 | Lemma 4 for 2lgslem3 15788. (Contributed by AV, 15-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0) | ||
| Theorem | 2lgslem3 15788 | Lemma 3 for 2lgs 15791. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)) | ||
| Theorem | 2lgs2 15789 | The Legendre symbol for 2 at 2 is 0. (Contributed by AV, 20-Jun-2021.) |
| ⊢ (2 /L 2) = 0 | ||
| Theorem | 2lgslem4 15790 | Lemma 4 for 2lgs 15791: special case of 2lgs 15791 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) |
| ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) | ||
| Theorem | 2lgs 15791 | The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 15704) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.) |
| ⊢ (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})) | ||
| Theorem | 2lgsoddprmlem1 15792 | Lemma 1 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8))) | ||
| Theorem | 2lgsoddprmlem2 15793 | Lemma 2 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))) | ||
| Theorem | 2lgsoddprmlem3a 15794 | Lemma 1 for 2lgsoddprmlem3 15798. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (((1↑2) − 1) / 8) = 0 | ||
| Theorem | 2lgsoddprmlem3b 15795 | Lemma 2 for 2lgsoddprmlem3 15798. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (((3↑2) − 1) / 8) = 1 | ||
| Theorem | 2lgsoddprmlem3c 15796 | Lemma 3 for 2lgsoddprmlem3 15798. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (((5↑2) − 1) / 8) = 3 | ||
| Theorem | 2lgsoddprmlem3d 15797 | Lemma 4 for 2lgsoddprmlem3 15798. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (((7↑2) − 1) / 8) = (2 · 3) | ||
| Theorem | 2lgsoddprmlem3 15798 | Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})) | ||
| Theorem | 2lgsoddprmlem4 15799 | Lemma 4 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ (𝑁 mod 8) ∈ {1, 7})) | ||
| Theorem | 2lgsoddprm 15800 | The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.) |
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |