HomeHome Intuitionistic Logic Explorer
Theorem List (p. 158 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15701-15800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-bdfindis 15701* Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4637 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4637, finds2 4638, finds1 4639. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝜓    &   𝑥𝜒    &   𝑥𝜃    &   (𝑥 = ∅ → (𝜓𝜑))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = suc 𝑦 → (𝜃𝜑))       ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ∀𝑥 ∈ ω 𝜑)
 
Theorembj-bdfindisg 15702* Version of bj-bdfindis 15701 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 15701 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝜓    &   𝑥𝜒    &   𝑥𝜃    &   (𝑥 = ∅ → (𝜓𝜑))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = suc 𝑦 → (𝜃𝜑))    &   𝑥𝐴    &   𝑥𝜏    &   (𝑥 = 𝐴 → (𝜑𝜏))       ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → (𝐴 ∈ ω → 𝜏))
 
Theorembj-bdfindes 15703 Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 15701 for explanations. From this version, it is easy to prove the bounded version of findes 4640. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑       (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
 
Theorembj-nn0suc0 15704* Constructive proof of a variant of nn0suc 4641. For a constructive proof of nn0suc 4641, see bj-nn0suc 15718. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
 
Theorembj-nntrans 15705 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
 
Theorembj-nntrans2 15706 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → Tr 𝐴)
 
Theorembj-nnelirr 15707 A natural number does not belong to itself. Version of elirr 4578 for natural numbers, which does not require ax-setind 4574. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → ¬ 𝐴𝐴)
 
Theorembj-nnen2lp 15708 A version of en2lp 4591 for natural numbers, which does not require ax-setind 4574.

Note: using this theorem and bj-nnelirr 15707, one can remove dependency on ax-setind 4574 from nntri2 6561 and nndcel 6567; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴𝐵𝐵𝐴))
 
Theorembj-peano4 15709 Remove from peano4 4634 dependency on ax-setind 4574. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
 
Theorembj-omtrans 15710 The set ω is transitive. A natural number is included in ω. Constructive proof of elnn 4643.

The idea is to use bounded induction with the formula 𝑥 ⊆ ω. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with 𝑥𝑎 and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

(𝐴 ∈ ω → 𝐴 ⊆ ω)
 
Theorembj-omtrans2 15711 The set ω is transitive. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Tr ω
 
Theorembj-nnord 15712 A natural number is an ordinal class. Constructive proof of nnord 4649. Can also be proved from bj-nnelon 15713 if the latter is proved from bj-omssonALT 15717. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
(𝐴 ∈ ω → Ord 𝐴)
 
Theorembj-nnelon 15713 A natural number is an ordinal. Constructive proof of nnon 4647. Can also be proved from bj-omssonALT 15717. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
(𝐴 ∈ ω → 𝐴 ∈ On)
 
Theorembj-omord 15714 The set ω is an ordinal class. Constructive proof of ordom 4644. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Ord ω
 
Theorembj-omelon 15715 The set ω is an ordinal. Constructive proof of omelon 4646. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
ω ∈ On
 
Theorembj-omsson 15716 Constructive proof of omsson 4650. See also bj-omssonALT 15717. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.
ω ⊆ On
 
Theorembj-omssonALT 15717 Alternate proof of bj-omsson 15716. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
ω ⊆ On
 
Theorembj-nn0suc 15718* Proof of (biconditional form of) nn0suc 4641 from the core axioms of CZF. See also bj-nn0sucALT 15732. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
 
13.2.11  CZF: Set induction

In this section, we add the axiom of set induction to the core axioms of CZF.

 
13.2.11.1  Set induction

In this section, we prove some variants of the axiom of set induction.

 
Theoremsetindft 15719* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
(∀𝑥𝑦𝜑 → (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑))
 
Theoremsetindf 15720* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
𝑦𝜑       (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑)
 
Theoremsetindis 15721* Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.)
𝑥𝜓    &   𝑥𝜒    &   𝑦𝜑    &   𝑦𝜓    &   (𝑥 = 𝑧 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜒𝜑))       (∀𝑦(∀𝑧𝑦 𝜓𝜒) → ∀𝑥𝜑)
 
Axiomax-bdsetind 15722* Axiom of bounded set induction. (Contributed by BJ, 28-Nov-2019.)
BOUNDED 𝜑       (∀𝑎(∀𝑦𝑎 [𝑦 / 𝑎]𝜑𝜑) → ∀𝑎𝜑)
 
Theorembdsetindis 15723* Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝜓    &   𝑥𝜒    &   𝑦𝜑    &   𝑦𝜓    &   (𝑥 = 𝑧 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜒𝜑))       (∀𝑦(∀𝑧𝑦 𝜓𝜒) → ∀𝑥𝜑)
 
Theorembj-inf2vnlem1 15724* Lemma for bj-inf2vn 15728. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
(∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
 
Theorembj-inf2vnlem2 15725* Lemma for bj-inf2vnlem3 15726 and bj-inf2vnlem4 15727. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
(∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍))))
 
Theorembj-inf2vnlem3 15726* Lemma for bj-inf2vn 15728. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴    &   BOUNDED 𝑍       (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
 
Theorembj-inf2vnlem4 15727* Lemma for bj-inf2vn2 15729. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
(∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
 
Theorembj-inf2vn 15728* A sufficient condition for ω to be a set. See bj-inf2vn2 15729 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴       (𝐴𝑉 → (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω))
 
Theorembj-inf2vn2 15729* A sufficient condition for ω to be a set; unbounded version of bj-inf2vn 15728. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω))
 
Axiomax-inf2 15730* Another axiom of infinity in a constructive setting (see ax-infvn 15695). (Contributed by BJ, 14-Nov-2019.) (New usage is discouraged.)
𝑎𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦))
 
Theorembj-omex2 15731 Using bounded set induction and the strong axiom of infinity, ω is a set, that is, we recover ax-infvn 15695 (see bj-2inf 15692 for the equivalence of the latter with bj-omex 15696). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
ω ∈ V
 
Theorembj-nn0sucALT 15732* Alternate proof of bj-nn0suc 15718, also constructive but from ax-inf2 15730, hence requiring ax-bdsetind 15722. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
 
13.2.11.2  Full induction

In this section, using the axiom of set induction, we prove full induction on the set of natural numbers.

 
Theorembj-findis 15733* Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 15701 for a bounded version not requiring ax-setind 4574. See finds 4637 for a proof in IZF. From this version, it is easy to prove of finds 4637, finds2 4638, finds1 4639. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝑥𝜒    &   𝑥𝜃    &   (𝑥 = ∅ → (𝜓𝜑))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = suc 𝑦 → (𝜃𝜑))       ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ∀𝑥 ∈ ω 𝜑)
 
Theorembj-findisg 15734* Version of bj-findis 15733 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 15733 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝑥𝜒    &   𝑥𝜃    &   (𝑥 = ∅ → (𝜓𝜑))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = suc 𝑦 → (𝜃𝜑))    &   𝑥𝐴    &   𝑥𝜏    &   (𝑥 = 𝐴 → (𝜑𝜏))       ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → (𝐴 ∈ ω → 𝜏))
 
Theorembj-findes 15735 Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 15733 for explanations. From this version, it is easy to prove findes 4640. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
(([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
 
13.2.12  CZF: Strong collection

In this section, we state the axiom scheme of strong collection, which is part of CZF set theory.

 
Axiomax-strcoll 15736* Axiom scheme of strong collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that 𝜑 represents a multivalued function on 𝑎, or equivalently a collection of nonempty classes indexed by 𝑎, and the axiom asserts the existence of a set 𝑏 which "collects" at least one element in the image of each 𝑥𝑎 and which is made only of such elements. That second conjunct is what makes it "strong", compared to the axiom scheme of collection ax-coll 4149. (Contributed by BJ, 5-Oct-2019.)
𝑎(∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
 
Theoremstrcoll2 15737* Version of ax-strcoll 15736 with one disjoint variable condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
(∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
 
Theoremstrcollnft 15738* Closed form of strcollnf 15739. (Contributed by BJ, 21-Oct-2019.)
(∀𝑥𝑦𝑏𝜑 → (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)))
 
Theoremstrcollnf 15739* Version of ax-strcoll 15736 with one disjoint variable condition removed, the other disjoint variable condition replaced with a nonfreeness hypothesis, and without initial universal quantifier. Version of strcoll2 15737 with the disjoint variable condition on 𝑏, 𝜑 replaced with a nonfreeness hypothesis.

This proof aims to demonstrate a standard technique, but strcoll2 15737 will generally suffice: since the theorem asserts the existence of a set 𝑏, supposing that that setvar does not occur in the already defined 𝜑 is not a big constraint. (Contributed by BJ, 21-Oct-2019.)

𝑏𝜑       (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
 
TheoremstrcollnfALT 15740* Alternate proof of strcollnf 15739, not using strcollnft 15738. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑏𝜑       (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
 
13.2.13  CZF: Subset collection

In this section, we state the axiom scheme of subset collection, which is part of CZF set theory.

 
Axiomax-sscoll 15741* Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that 𝜑 represents a multivalued function from 𝑎 to 𝑏, or equivalently a collection of nonempty subsets of 𝑏 indexed by 𝑎, and the consequent asserts the existence of a subset of 𝑐 which "collects" at least one element in the image of each 𝑥𝑎 and which is made only of such elements. The axiom asserts the existence, for any sets 𝑎, 𝑏, of a set 𝑐 such that that implication holds for any value of the parameter 𝑧 of 𝜑. (Contributed by BJ, 5-Oct-2019.)
𝑎𝑏𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
 
Theoremsscoll2 15742* Version of ax-sscoll 15741 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
 
13.2.14  Real numbers
 
Axiomax-ddkcomp 15743 Axiom of Dedekind completeness for Dedekind real numbers: every inhabited upper-bounded located set of reals has a real upper bound. Ideally, this axiom should be "proved" as "axddkcomp" for the real numbers constructed from IZF, and then Axiom ax-ddkcomp 15743 should be used in place of construction specific results. In particular, axcaucvg 7986 should be proved from it. (Contributed by BJ, 24-Oct-2021.)
(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 𝑦𝑥 ∧ ((𝐵𝑅 ∧ ∀𝑦𝐴 𝑦𝐵) → 𝑥𝐵)))
 
13.3  Mathbox for Jim Kingdon
 
13.3.1  Propositional and predicate logic
 
Theoremnnnotnotr 15744 Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 851, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.)
¬ ¬ (¬ ¬ 𝜑𝜑)
 
13.3.2  Natural numbers
 
Theorem1dom1el 15745 If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) → 𝐵 = 𝐶)
 
Theoremss1oel2o 15746 Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4232 which more directly illustrates the contrast with el2oss1o 6510. (Contributed by Jim Kingdon, 8-Aug-2022.)
(EXMID ↔ ∀𝑥(𝑥 ⊆ 1o𝑥 ∈ 2o))
 
Theoremnnti 15747 Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
(𝜑𝐴 ∈ ω)       ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢)))
 
Theorem012of 15748 Mapping zero and one between 0 and ω style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝐺 ↾ {0, 1}):{0, 1}⟶2o
 
Theorem2o01f 15749 Mapping zero and one between ω and 0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝐺 ↾ 2o):2o⟶{0, 1}
 
Theorem2omap 15750* Mapping between (2o𝑚 𝐴) and decidable subsets of 𝐴. (Contributed by Jim Kingdon, 12-Nov-2025.)
𝐹 = (𝑠 ∈ (2o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})       (𝐴𝑉𝐹:(2o𝑚 𝐴)–1-1-onto→{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥})
 
Theorem2omapen 15751* Equinumerosity of (2o𝑚 𝐴) and the set of decidable subsets of 𝐴. (Contributed by Jim Kingdon, 14-Nov-2025.)
(𝐴𝑉 → (2o𝑚 𝐴) ≈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥})
 
13.3.3  The power set of a singleton
 
Theorempwtrufal 15752 A subset of the singleton {∅} cannot be anything other than or {∅}. Removing the double negation would change the meaning, as seen at exmid01 4232. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4230), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.)
(𝐴 ⊆ {∅} → ¬ ¬ (𝐴 = ∅ ∨ 𝐴 = {∅}))
 
Theorempwle2 15753* An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
𝑇 = 𝑥𝑁 ({𝑥} × 1o)       ((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) → 𝑁 ⊆ 2o)
 
Theorempwf1oexmid 15754* An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
𝑇 = 𝑥𝑁 ({𝑥} × 1o)       ((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o ↔ (𝑁 = 2oEXMID)))
 
Theoremsubctctexmid 15755* If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
(𝜑 → ∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)))    &   (𝜑 → ω ∈ Markov)       (𝜑EXMID)
 
Theoremdomomsubct 15756* A set dominated by ω is subcountable. (Contributed by Jim Kingdon, 11-Nov-2025.)
(𝐴 ≼ ω → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴))
 
Theoremsssneq 15757* Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
(𝐴 ⊆ {𝐵} → ∀𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
 
Theorempw1nct 15758* A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.)
(∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o))
 
13.3.4  Omniscience of NN+oo
 
Theorem0nninf 15759 The zero element of (the constant sequence equal to ). (Contributed by Jim Kingdon, 14-Jul-2022.)
(ω × {∅}) ∈ ℕ
 
Theoremnnsf 15760* Domain and range of 𝑆. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.)
𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))       𝑆:ℕ⟶ℕ
 
Theorempeano4nninf 15761* The successor function on is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.)
𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))       𝑆:ℕ1-1→ℕ
 
Theorempeano3nninf 15762* The successor function on is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))       (𝐴 ∈ ℕ → (𝑆𝐴) ≠ (𝑥 ∈ ω ↦ ∅))
 
Theoremnninfalllem1 15763* Lemma for nninfall 15764. (Contributed by Jim Kingdon, 1-Aug-2022.)
(𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)    &   (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑 → (𝑄𝑃) = ∅)       (𝜑 → ∀𝑛 ∈ ω (𝑃𝑛) = 1o)
 
Theoremnninfall 15764* Given a decidable predicate on , showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which 𝑄 is a decidable predicate is that it assigns a value of either or 1o (which can be thought of as false and true) to every element of . Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
(𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)    &   (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)       (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
 
Theoremnninfsellemdc 15765* Lemma for nninfself 15768. Showing that the selection function is well defined. (Contributed by Jim Kingdon, 8-Aug-2022.)
((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
 
Theoremnninfsellemcl 15766* Lemma for nninfself 15768. (Contributed by Jim Kingdon, 8-Aug-2022.)
((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → if(∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
 
Theoremnninfsellemsuc 15767* Lemma for nninfself 15768. (Contributed by Jim Kingdon, 6-Aug-2022.)
((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
 
Theoremnninfself 15768* Domain and range of the selection function for . (Contributed by Jim Kingdon, 6-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))       𝐸:(2o𝑚)⟶ℕ
 
Theoremnninfsellemeq 15769* Lemma for nninfsel 15772. (Contributed by Jim Kingdon, 9-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))    &   (𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)    &   (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)       (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
 
Theoremnninfsellemqall 15770* Lemma for nninfsel 15772. (Contributed by Jim Kingdon, 9-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))    &   (𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)    &   (𝜑𝑁 ∈ ω)       (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o)
 
Theoremnninfsellemeqinf 15771* Lemma for nninfsel 15772. (Contributed by Jim Kingdon, 9-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))    &   (𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)       (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ 1o))
 
Theoremnninfsel 15772* 𝐸 is a selection function for . Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))    &   (𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)       (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
 
Theoremnninfomnilem 15773* Lemma for nninfomni 15774. (Contributed by Jim Kingdon, 10-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))        ∈ Omni
 
Theoremnninfomni 15774 is omniscient. Corollary 3.7 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 10-Aug-2022.)
∈ Omni
 
Theoremnninffeq 15775* Equality of two functions on which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one, (𝜑 → ∀𝑛 ∈ suc ω...). (Contributed by Jim Kingdon, 4-Aug-2023.)
(𝜑𝐹:ℕ⟶ℕ0)    &   (𝜑𝐺:ℕ⟶ℕ0)    &   (𝜑 → (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑥 ∈ ω ↦ 1o)))    &   (𝜑 → ∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))       (𝜑𝐹 = 𝐺)
 
Theoremnnnninfen 15776 Equinumerosity of the natural numbers and is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.)
(ω ≈ ℕ ↔ ω ∈ Omni)
 
Theoremnnnninfex 15777* If an element of has a value of zero somewhere, then it is the mapping of a natural number. (Contributed by Jim Kingdon, 4-Aug-2022.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → (𝑃𝑁) = ∅)       (𝜑 → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
 
Theoremnninfnfiinf 15778* An element of which is not finite is infinite. (Contributed by Jim Kingdon, 30-Nov-2025.)
((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦ 1o))
 
13.3.5  Schroeder-Bernstein Theorem
 
Theoremexmidsbthrlem 15779* Lemma for exmidsbthr 15780. (Contributed by Jim Kingdon, 11-Aug-2022.)
𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))       (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
 
Theoremexmidsbthr 15780* The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.)
(∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
 
Theoremexmidsbth 15781* The Schroeder-Bernstein Theorem is equivalent to excluded middle. This is Metamath 100 proof #25. The forward direction (isbth 7042) is the proof of the Schroeder-Bernstein Theorem from the Metamath Proof Explorer database (in which excluded middle holds), but adapted to use EXMID as an antecedent rather than being unconditionally true, as in the non-intuitionistic proof at https://us.metamath.org/mpeuni/sbth.html 7042.

The reverse direction (exmidsbthr 15780) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

(EXMID ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
 
Theoremsbthomlem 15782 Lemma for sbthom 15783. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.)
(𝜑 → ω ∈ Omni)    &   (𝜑𝑌 ⊆ {∅})    &   (𝜑𝐹:ω–1-1-onto→(𝑌 ⊔ ω))       (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅}))
 
Theoremsbthom 15783 Schroeder-Bernstein is not possible even for ω. We know by exmidsbth 15781 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is ω? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.)
((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID)
 
13.3.6  Real and complex numbers
 
Theoremqdencn 15784* The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 11386 (and also would hold for ℝ × ℝ with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
 
Theoremrefeq 15785* Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.)
(𝜑𝐹:ℝ⟶ℝ)    &   (𝜑𝐺:ℝ⟶ℝ)    &   (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹𝑥) = (𝐺𝑥)))    &   (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹𝑥) = (𝐺𝑥)))    &   (𝜑 → (𝐹‘0) = (𝐺‘0))       (𝜑𝐹 = 𝐺)
 
Theoremtriap 15786 Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵))
 
Theoremisomninnlem 15787* Lemma for isomninn 15788. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥𝐴 (𝑓𝑥) = 0 ∨ ∀𝑥𝐴 (𝑓𝑥) = 1)))
 
Theoremisomninn 15788* Omniscience stated in terms of natural numbers. Similar to isomnimap 7212 but it will sometimes be more convenient to use 0 and 1 rather than and 1o. (Contributed by Jim Kingdon, 30-Aug-2023.)
(𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥𝐴 (𝑓𝑥) = 0 ∨ ∀𝑥𝐴 (𝑓𝑥) = 1)))
 
Theoremcvgcmp2nlemabs 15789* Lemma for cvgcmp2n 15790. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))    &   ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
 
Theoremcvgcmp2n 15790* A comparison test for convergence of a real infinite series. (Contributed by Jim Kingdon, 25-Aug-2023.)
((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))    &   ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))       (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
 
Theoremiooref1o 15791 A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
𝐹 = (𝑥 ∈ ℝ ↦ (1 / (1 + (exp‘𝑥))))       𝐹:ℝ–1-1-onto→(0(,)1)
 
Theoremiooreen 15792 An open interval is equinumerous to the real numbers. (Contributed by Jim Kingdon, 27-Jun-2024.)
(0(,)1) ≈ ℝ
 
13.3.7  Analytic omniscience principles

Omniscience principles refer to several propositions, most of them weaker than full excluded middle, which do not follow from the axioms of IZF set theory.

They are: (0) the Principle of Omniscience (PO), which is another name for excluded middle (see exmidomni 7217), (1) the Limited Principle of Omniscience (LPO) is ω ∈ Omni (see df-omni 7210), (2) the Weak Limited Principle of Omniscience (WLPO) is ω ∈ WOmni (see df-womni 7239), (3) Markov's Principle (MP) is ω ∈ Markov (see df-markov 7227), (4) the Lesser Limited Principle of Omniscience (LLPO) is not yet defined in iset.mm.

They also have analytic counterparts each of which follows from the corresponding omniscience principle: (1) Analytic LPO is real number trichotomy, 𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) (see trilpo 15800), (2) Analytic WLPO is decidability of real number equality, 𝑥 ∈ ℝ∀𝑦 ∈ ℝDECID 𝑥 = 𝑦 (see redcwlpo 15812), (3) Analytic MP is 𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥𝑦𝑥 # 𝑦) (see neapmkv 15825), (4) Analytic LLPO is real number dichotomy, 𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥𝑦𝑦𝑥) (most relevant current theorem is maxclpr 11406).

 
Theoremtrilpolemclim 15793* Lemma for trilpo 15800. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐺 = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))       (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
 
Theoremtrilpolemcl 15794* Lemma for trilpo 15800. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))       (𝜑𝐴 ∈ ℝ)
 
Theoremtrilpolemisumle 15795* Lemma for trilpo 15800. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℕ)       (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
 
Theoremtrilpolemgt1 15796* Lemma for trilpo 15800. The 1 < 𝐴 case. (Contributed by Jim Kingdon, 23-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))       (𝜑 → ¬ 1 < 𝐴)
 
Theoremtrilpolemeq1 15797* Lemma for trilpo 15800. The 𝐴 = 1 case. This is proved by noting that if any (𝐹𝑥) is zero, then the infinite sum 𝐴 is less than one based on the term which is zero. We are using the fact that the 𝐹 sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))    &   (𝜑𝐴 = 1)       (𝜑 → ∀𝑥 ∈ ℕ (𝐹𝑥) = 1)
 
Theoremtrilpolemlt1 15798* Lemma for trilpo 15800. The 𝐴 < 1 case. We can use the distance between 𝐴 and one (that is, 1 − 𝐴) to find a position in the sequence 𝑛 where terms after that point will not add up to as much as 1 − 𝐴. By finomni 7215 we know the terms up to 𝑛 either contain a zero or are all one. But if they are all one that contradicts the way we constructed 𝑛, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))    &   (𝜑𝐴 < 1)       (𝜑 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
 
Theoremtrilpolemres 15799* Lemma for trilpo 15800. The result. (Contributed by Jim Kingdon, 23-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))    &   (𝜑 → (𝐴 < 1 ∨ 𝐴 = 1 ∨ 1 < 𝐴))       (𝜑 → (∃𝑥 ∈ ℕ (𝐹𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹𝑥) = 1))
 
Theoremtrilpo 15800* Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 15798 (which means the sequence contains a zero), trilpolemeq1 15797 (which means the sequence is all ones), and trilpolemgt1 15796 (which is not possible).

Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 15786) or that the real numbers are a discrete field (see trirec0 15801).

LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10349 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.)

(∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ω ∈ Omni)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15841
  Copyright terms: Public domain < Previous  Next >