ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabg GIF version

Theorem elabg 2949
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.)
Hypothesis
Ref Expression
elabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabg (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elabg
StepHypRef Expression
1 nfcv 2372 . 2 𝑥𝐴
2 nfv 1574 . 2 𝑥𝜓
3 elabg.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3elabgf 2945 1 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  {cab 2215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  elab2g  2950  intmin3  3949  finds  4689  elxpi  4732  elabrexg  5875  ovelrn  6145  elfi  7126  indpi  7517  peano5nnnn  8067  peano5nni  9101  lss1d  14332  lspsn  14365  zndvds  14598  eltg  14711  eltg2  14712  ausgrusgrien  15954
  Copyright terms: Public domain W3C validator