ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifn GIF version

Theorem eldifn 3270
Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
eldifn (𝐴 ∈ (𝐵𝐶) → ¬ 𝐴𝐶)

Proof of Theorem eldifn
StepHypRef Expression
1 eldif 3150 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
21simprbi 275 1 (𝐴 ∈ (𝐵𝐶) → ¬ 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2158  cdif 3138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-dif 3143
This theorem is referenced by:  elndif  3271  unssin  3386  inssun  3387  noel  3438  disjel  3489  undifexmid  4205  exmidundif  4218  exmidundifim  4219  exmid1stab  4220  phpm  6879  undifdcss  6936  fsum3cvg  11400  summodclem2a  11403  fisumss  11414  isumss2  11415  binomlem  11505  fproddccvg  11594  prodmodclem2a  11598  fprodssdc  11612  fprodsplitdc  11618
  Copyright terms: Public domain W3C validator