| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifn | GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| eldifn | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3175 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2176 ∖ cdif 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 |
| This theorem is referenced by: elndif 3297 unssin 3412 inssun 3413 noel 3464 disjel 3515 undifexmid 4237 exmidundif 4250 exmidundifim 4251 exmid1stab 4252 phpm 6962 undifdcss 7020 fsum3cvg 11689 summodclem2a 11692 fisumss 11703 isumss2 11704 binomlem 11794 fproddccvg 11883 prodmodclem2a 11887 fprodssdc 11901 fprodsplitdc 11907 ply1termlem 15214 plyaddlem1 15219 plymullem1 15220 plycoeid3 15229 dvply1 15237 |
| Copyright terms: Public domain | W3C validator |