ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifn GIF version

Theorem eldifn 3287
Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
eldifn (𝐴 ∈ (𝐵𝐶) → ¬ 𝐴𝐶)

Proof of Theorem eldifn
StepHypRef Expression
1 eldif 3166 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
21simprbi 275 1 (𝐴 ∈ (𝐵𝐶) → ¬ 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2167  cdif 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159
This theorem is referenced by:  elndif  3288  unssin  3403  inssun  3404  noel  3455  disjel  3506  undifexmid  4227  exmidundif  4240  exmidundifim  4241  exmid1stab  4242  phpm  6935  undifdcss  6993  fsum3cvg  11560  summodclem2a  11563  fisumss  11574  isumss2  11575  binomlem  11665  fproddccvg  11754  prodmodclem2a  11758  fprodssdc  11772  fprodsplitdc  11778  ply1termlem  15062  plyaddlem1  15067  plymullem1  15068  plycoeid3  15077  dvply1  15085
  Copyright terms: Public domain W3C validator