Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifn | GIF version |
Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
eldifn | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3125 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
2 | 1 | simprbi 273 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2136 ∖ cdif 3113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 |
This theorem is referenced by: elndif 3246 unssin 3361 inssun 3362 noel 3413 disjel 3463 undifexmid 4172 exmidundif 4185 exmidundifim 4186 phpm 6831 undifdcss 6888 fsum3cvg 11319 summodclem2a 11322 fisumss 11333 isumss2 11334 binomlem 11424 fproddccvg 11513 prodmodclem2a 11517 fprodssdc 11531 fprodsplitdc 11537 exmid1stab 13880 |
Copyright terms: Public domain | W3C validator |