| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifn | GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| eldifn | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3166 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 ∖ cdif 3154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: elndif 3287 unssin 3402 inssun 3403 noel 3454 disjel 3505 undifexmid 4226 exmidundif 4239 exmidundifim 4240 exmid1stab 4241 phpm 6926 undifdcss 6984 fsum3cvg 11543 summodclem2a 11546 fisumss 11557 isumss2 11558 binomlem 11648 fproddccvg 11737 prodmodclem2a 11741 fprodssdc 11755 fprodsplitdc 11761 ply1termlem 14978 plyaddlem1 14983 plymullem1 14984 plycoeid3 14993 dvply1 15001 |
| Copyright terms: Public domain | W3C validator |