ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifn GIF version

Theorem eldifn 3260
Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
eldifn (𝐴 ∈ (𝐵𝐶) → ¬ 𝐴𝐶)

Proof of Theorem eldifn
StepHypRef Expression
1 eldif 3140 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
21simprbi 275 1 (𝐴 ∈ (𝐵𝐶) → ¬ 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2148  cdif 3128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133
This theorem is referenced by:  elndif  3261  unssin  3376  inssun  3377  noel  3428  disjel  3479  undifexmid  4195  exmidundif  4208  exmidundifim  4209  exmid1stab  4210  phpm  6867  undifdcss  6924  fsum3cvg  11388  summodclem2a  11391  fisumss  11402  isumss2  11403  binomlem  11493  fproddccvg  11582  prodmodclem2a  11586  fprodssdc  11600  fprodsplitdc  11606
  Copyright terms: Public domain W3C validator