ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifn GIF version

Theorem eldifn 3304
Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
eldifn (𝐴 ∈ (𝐵𝐶) → ¬ 𝐴𝐶)

Proof of Theorem eldifn
StepHypRef Expression
1 eldif 3183 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
21simprbi 275 1 (𝐴 ∈ (𝐵𝐶) → ¬ 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2178  cdif 3171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176
This theorem is referenced by:  elndif  3305  unssin  3420  inssun  3421  noel  3472  disjel  3523  undifexmid  4253  exmidundif  4266  exmidundifim  4267  exmid1stab  4268  phpm  6988  undifdcss  7046  fsum3cvg  11804  summodclem2a  11807  fisumss  11818  isumss2  11819  binomlem  11909  fproddccvg  11998  prodmodclem2a  12002  fprodssdc  12016  fprodsplitdc  12022  ply1termlem  15329  plyaddlem1  15334  plymullem1  15335  plycoeid3  15344  dvply1  15352
  Copyright terms: Public domain W3C validator