| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifn | GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| eldifn | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3206 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2200 ∖ cdif 3194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 |
| This theorem is referenced by: elndif 3328 unssin 3443 inssun 3444 noel 3495 disjel 3546 undifexmid 4276 exmidundif 4289 exmidundifim 4290 exmid1stab 4291 phpm 7023 undifdcss 7081 fsum3cvg 11884 summodclem2a 11887 fisumss 11898 isumss2 11899 binomlem 11989 fproddccvg 12078 prodmodclem2a 12082 fprodssdc 12096 fprodsplitdc 12102 ply1termlem 15410 plyaddlem1 15415 plymullem1 15416 plycoeid3 15425 dvply1 15433 |
| Copyright terms: Public domain | W3C validator |