ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssdif GIF version

Theorem inssdif 3399
Description: Intersection of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
Assertion
Ref Expression
inssdif (𝐴𝐵) ⊆ (𝐴 ∖ (V ∖ 𝐵))

Proof of Theorem inssdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elndif 3287 . . . 4 (𝑥𝐵 → ¬ 𝑥 ∈ (V ∖ 𝐵))
21anim2i 342 . . 3 ((𝑥𝐴𝑥𝐵) → (𝑥𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵)))
3 elin 3346 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
4 eldif 3166 . . 3 (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵)))
52, 3, 43imtr4i 201 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)))
65ssriv 3187 1 (𝐴𝐵) ⊆ (𝐴 ∖ (V ∖ 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wcel 2167  Vcvv 2763  cdif 3154  cin 3156  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170
This theorem is referenced by:  difdif2ss  3420
  Copyright terms: Public domain W3C validator