Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inssdif | GIF version |
Description: Intersection of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.) |
Ref | Expression |
---|---|
inssdif | ⊢ (𝐴 ∩ 𝐵) ⊆ (𝐴 ∖ (V ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elndif 3227 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ (V ∖ 𝐵)) | |
2 | 1 | anim2i 340 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) |
3 | elin 3286 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
4 | eldif 3107 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) | |
5 | 2, 3, 4 | 3imtr4i 200 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵))) |
6 | 5 | ssriv 3128 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ (𝐴 ∖ (V ∖ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∈ wcel 2125 Vcvv 2709 ∖ cdif 3095 ∩ cin 3097 ⊆ wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-dif 3100 df-in 3104 df-ss 3111 |
This theorem is referenced by: difdif2ss 3360 |
Copyright terms: Public domain | W3C validator |