ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringinvnz1ne0 GIF version

Theorem ringinvnz1ne0 14007
Description: In a unital ring, a left invertible element is different from zero iff 10. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b 𝐵 = (Base‘𝑅)
ringinvnzdiv.t · = (.r𝑅)
ringinvnzdiv.u 1 = (1r𝑅)
ringinvnzdiv.z 0 = (0g𝑅)
ringinvnzdiv.r (𝜑𝑅 ∈ Ring)
ringinvnzdiv.x (𝜑𝑋𝐵)
ringinvnzdiv.a (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
Assertion
Ref Expression
ringinvnz1ne0 (𝜑 → (𝑋010 ))
Distinct variable groups:   𝑋,𝑎   0 ,𝑎   1 ,𝑎   · ,𝑎   𝜑,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)

Proof of Theorem ringinvnz1ne0
StepHypRef Expression
1 oveq2 6008 . . . . 5 (𝑋 = 0 → (𝑎 · 𝑋) = (𝑎 · 0 ))
2 ringinvnzdiv.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
3 ringinvnzdiv.b . . . . . . . 8 𝐵 = (Base‘𝑅)
4 ringinvnzdiv.t . . . . . . . 8 · = (.r𝑅)
5 ringinvnzdiv.z . . . . . . . 8 0 = (0g𝑅)
63, 4, 5ringrz 14002 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
72, 6sylan 283 . . . . . 6 ((𝜑𝑎𝐵) → (𝑎 · 0 ) = 0 )
8 eqeq12 2242 . . . . . . . 8 (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) ↔ 1 = 0 ))
98biimpd 144 . . . . . . 7 (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))
109ex 115 . . . . . 6 ((𝑎 · 𝑋) = 1 → ((𝑎 · 0 ) = 0 → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )))
117, 10mpan9 281 . . . . 5 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))
121, 11syl5 32 . . . 4 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 01 = 0 ))
13 oveq2 6008 . . . . 5 ( 1 = 0 → (𝑋 · 1 ) = (𝑋 · 0 ))
14 ringinvnzdiv.x . . . . . . 7 (𝜑𝑋𝐵)
15 ringinvnzdiv.u . . . . . . . . . 10 1 = (1r𝑅)
163, 4, 15ringridm 13982 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
173, 4, 5ringrz 14002 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
1816, 17eqeq12d 2244 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) ↔ 𝑋 = 0 ))
1918biimpd 144 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
202, 14, 19syl2anc 411 . . . . . 6 (𝜑 → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
2120ad2antrr 488 . . . . 5 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
2213, 21syl5 32 . . . 4 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 = 0𝑋 = 0 ))
2312, 22impbid 129 . . 3 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 01 = 0 ))
24 ringinvnzdiv.a . . 3 (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
2523, 24r19.29a 2674 . 2 (𝜑 → (𝑋 = 01 = 0 ))
2625necon3bid 2441 1 (𝜑 → (𝑋010 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wrex 2509  cfv 5317  (class class class)co 6000  Basecbs 13027  .rcmulr 13106  0gc0g 13284  1rcur 13917  Ringcrg 13954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-mgp 13879  df-ur 13918  df-ring 13956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator