![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringinvnz1ne0 | GIF version |
Description: In a unital ring, a left invertible element is different from zero iff 1 ≠ 0. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
ringinvnzdiv.b | ⊢ 𝐵 = (Base‘𝑅) |
ringinvnzdiv.t | ⊢ · = (.r‘𝑅) |
ringinvnzdiv.u | ⊢ 1 = (1r‘𝑅) |
ringinvnzdiv.z | ⊢ 0 = (0g‘𝑅) |
ringinvnzdiv.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringinvnzdiv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringinvnzdiv.a | ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) |
Ref | Expression |
---|---|
ringinvnz1ne0 | ⊢ (𝜑 → (𝑋 ≠ 0 ↔ 1 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5926 | . . . . 5 ⊢ (𝑋 = 0 → (𝑎 · 𝑋) = (𝑎 · 0 )) | |
2 | ringinvnzdiv.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | ringinvnzdiv.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
4 | ringinvnzdiv.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
5 | ringinvnzdiv.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
6 | 3, 4, 5 | ringrz 13540 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
7 | 2, 6 | sylan 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
8 | eqeq12 2206 | . . . . . . . 8 ⊢ (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) ↔ 1 = 0 )) | |
9 | 8 | biimpd 144 | . . . . . . 7 ⊢ (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )) |
10 | 9 | ex 115 | . . . . . 6 ⊢ ((𝑎 · 𝑋) = 1 → ((𝑎 · 0 ) = 0 → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))) |
11 | 7, 10 | mpan9 281 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )) |
12 | 1, 11 | syl5 32 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 0 → 1 = 0 )) |
13 | oveq2 5926 | . . . . 5 ⊢ ( 1 = 0 → (𝑋 · 1 ) = (𝑋 · 0 )) | |
14 | ringinvnzdiv.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | ringinvnzdiv.u | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑅) | |
16 | 3, 4, 15 | ringridm 13520 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) |
17 | 3, 4, 5 | ringrz 13540 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
18 | 16, 17 | eqeq12d 2208 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) ↔ 𝑋 = 0 )) |
19 | 18 | biimpd 144 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 )) |
20 | 2, 14, 19 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 )) |
21 | 20 | ad2antrr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 )) |
22 | 13, 21 | syl5 32 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 = 0 → 𝑋 = 0 )) |
23 | 12, 22 | impbid 129 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 0 ↔ 1 = 0 )) |
24 | ringinvnzdiv.a | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) | |
25 | 23, 24 | r19.29a 2637 | . 2 ⊢ (𝜑 → (𝑋 = 0 ↔ 1 = 0 )) |
26 | 25 | necon3bid 2405 | 1 ⊢ (𝜑 → (𝑋 ≠ 0 ↔ 1 ≠ 0 )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∃wrex 2473 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 .rcmulr 12696 0gc0g 12867 1rcur 13455 Ringcrg 13492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-mgp 13417 df-ur 13456 df-ring 13494 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |