ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringinvnz1ne0 GIF version

Theorem ringinvnz1ne0 13605
Description: In a unital ring, a left invertible element is different from zero iff 10. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b 𝐵 = (Base‘𝑅)
ringinvnzdiv.t · = (.r𝑅)
ringinvnzdiv.u 1 = (1r𝑅)
ringinvnzdiv.z 0 = (0g𝑅)
ringinvnzdiv.r (𝜑𝑅 ∈ Ring)
ringinvnzdiv.x (𝜑𝑋𝐵)
ringinvnzdiv.a (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
Assertion
Ref Expression
ringinvnz1ne0 (𝜑 → (𝑋010 ))
Distinct variable groups:   𝑋,𝑎   0 ,𝑎   1 ,𝑎   · ,𝑎   𝜑,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)

Proof of Theorem ringinvnz1ne0
StepHypRef Expression
1 oveq2 5930 . . . . 5 (𝑋 = 0 → (𝑎 · 𝑋) = (𝑎 · 0 ))
2 ringinvnzdiv.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
3 ringinvnzdiv.b . . . . . . . 8 𝐵 = (Base‘𝑅)
4 ringinvnzdiv.t . . . . . . . 8 · = (.r𝑅)
5 ringinvnzdiv.z . . . . . . . 8 0 = (0g𝑅)
63, 4, 5ringrz 13600 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
72, 6sylan 283 . . . . . 6 ((𝜑𝑎𝐵) → (𝑎 · 0 ) = 0 )
8 eqeq12 2209 . . . . . . . 8 (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) ↔ 1 = 0 ))
98biimpd 144 . . . . . . 7 (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))
109ex 115 . . . . . 6 ((𝑎 · 𝑋) = 1 → ((𝑎 · 0 ) = 0 → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )))
117, 10mpan9 281 . . . . 5 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))
121, 11syl5 32 . . . 4 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 01 = 0 ))
13 oveq2 5930 . . . . 5 ( 1 = 0 → (𝑋 · 1 ) = (𝑋 · 0 ))
14 ringinvnzdiv.x . . . . . . 7 (𝜑𝑋𝐵)
15 ringinvnzdiv.u . . . . . . . . . 10 1 = (1r𝑅)
163, 4, 15ringridm 13580 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
173, 4, 5ringrz 13600 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
1816, 17eqeq12d 2211 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) ↔ 𝑋 = 0 ))
1918biimpd 144 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
202, 14, 19syl2anc 411 . . . . . 6 (𝜑 → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
2120ad2antrr 488 . . . . 5 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
2213, 21syl5 32 . . . 4 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 = 0𝑋 = 0 ))
2312, 22impbid 129 . . 3 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 01 = 0 ))
24 ringinvnzdiv.a . . 3 (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
2523, 24r19.29a 2640 . 2 (𝜑 → (𝑋 = 01 = 0 ))
2625necon3bid 2408 1 (𝜑 → (𝑋010 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  wrex 2476  cfv 5258  (class class class)co 5922  Basecbs 12678  .rcmulr 12756  0gc0g 12927  1rcur 13515  Ringcrg 13552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-mgp 13477  df-ur 13516  df-ring 13554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator