| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringinvnz1ne0 | GIF version | ||
| Description: In a unital ring, a left invertible element is different from zero iff 1 ≠ 0. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
| Ref | Expression |
|---|---|
| ringinvnzdiv.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringinvnzdiv.t | ⊢ · = (.r‘𝑅) |
| ringinvnzdiv.u | ⊢ 1 = (1r‘𝑅) |
| ringinvnzdiv.z | ⊢ 0 = (0g‘𝑅) |
| ringinvnzdiv.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringinvnzdiv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringinvnzdiv.a | ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) |
| Ref | Expression |
|---|---|
| ringinvnz1ne0 | ⊢ (𝜑 → (𝑋 ≠ 0 ↔ 1 ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6008 | . . . . 5 ⊢ (𝑋 = 0 → (𝑎 · 𝑋) = (𝑎 · 0 )) | |
| 2 | ringinvnzdiv.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 3 | ringinvnzdiv.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | ringinvnzdiv.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
| 5 | ringinvnzdiv.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 6 | 3, 4, 5 | ringrz 14002 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
| 7 | 2, 6 | sylan 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
| 8 | eqeq12 2242 | . . . . . . . 8 ⊢ (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) ↔ 1 = 0 )) | |
| 9 | 8 | biimpd 144 | . . . . . . 7 ⊢ (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )) |
| 10 | 9 | ex 115 | . . . . . 6 ⊢ ((𝑎 · 𝑋) = 1 → ((𝑎 · 0 ) = 0 → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))) |
| 11 | 7, 10 | mpan9 281 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )) |
| 12 | 1, 11 | syl5 32 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 0 → 1 = 0 )) |
| 13 | oveq2 6008 | . . . . 5 ⊢ ( 1 = 0 → (𝑋 · 1 ) = (𝑋 · 0 )) | |
| 14 | ringinvnzdiv.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 15 | ringinvnzdiv.u | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑅) | |
| 16 | 3, 4, 15 | ringridm 13982 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) |
| 17 | 3, 4, 5 | ringrz 14002 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| 18 | 16, 17 | eqeq12d 2244 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) ↔ 𝑋 = 0 )) |
| 19 | 18 | biimpd 144 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 )) |
| 20 | 2, 14, 19 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 )) |
| 21 | 20 | ad2antrr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 )) |
| 22 | 13, 21 | syl5 32 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 = 0 → 𝑋 = 0 )) |
| 23 | 12, 22 | impbid 129 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 0 ↔ 1 = 0 )) |
| 24 | ringinvnzdiv.a | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) | |
| 25 | 23, 24 | r19.29a 2674 | . 2 ⊢ (𝜑 → (𝑋 = 0 ↔ 1 = 0 )) |
| 26 | 25 | necon3bid 2441 | 1 ⊢ (𝜑 → (𝑋 ≠ 0 ↔ 1 ≠ 0 )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∃wrex 2509 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 .rcmulr 13106 0gc0g 13284 1rcur 13917 Ringcrg 13954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-mgp 13879 df-ur 13918 df-ring 13956 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |