Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ringinvnz1ne0 | GIF version |
Description: In a unitary ring, a left invertible element is different from zero iff 1 ≠ 0. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
ringinvnzdiv.b | ⊢ 𝐵 = (Base‘𝑅) |
ringinvnzdiv.t | ⊢ · = (.r‘𝑅) |
ringinvnzdiv.u | ⊢ 1 = (1r‘𝑅) |
ringinvnzdiv.z | ⊢ 0 = (0g‘𝑅) |
ringinvnzdiv.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringinvnzdiv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringinvnzdiv.a | ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) |
Ref | Expression |
---|---|
ringinvnz1ne0 | ⊢ (𝜑 → (𝑋 ≠ 0 ↔ 1 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5873 | . . . . 5 ⊢ (𝑋 = 0 → (𝑎 · 𝑋) = (𝑎 · 0 )) | |
2 | ringinvnzdiv.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | ringinvnzdiv.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
4 | ringinvnzdiv.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
5 | ringinvnzdiv.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
6 | 3, 4, 5 | ringrz 13015 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
7 | 2, 6 | sylan 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
8 | eqeq12 2188 | . . . . . . . 8 ⊢ (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) ↔ 1 = 0 )) | |
9 | 8 | biimpd 144 | . . . . . . 7 ⊢ (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )) |
10 | 9 | ex 115 | . . . . . 6 ⊢ ((𝑎 · 𝑋) = 1 → ((𝑎 · 0 ) = 0 → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))) |
11 | 7, 10 | mpan9 281 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )) |
12 | 1, 11 | syl5 32 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 0 → 1 = 0 )) |
13 | oveq2 5873 | . . . . 5 ⊢ ( 1 = 0 → (𝑋 · 1 ) = (𝑋 · 0 )) | |
14 | ringinvnzdiv.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | ringinvnzdiv.u | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑅) | |
16 | 3, 4, 15 | ringridm 13000 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) |
17 | 3, 4, 5 | ringrz 13015 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
18 | 16, 17 | eqeq12d 2190 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) ↔ 𝑋 = 0 )) |
19 | 18 | biimpd 144 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 )) |
20 | 2, 14, 19 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 )) |
21 | 20 | ad2antrr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 )) |
22 | 13, 21 | syl5 32 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 = 0 → 𝑋 = 0 )) |
23 | 12, 22 | impbid 129 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 0 ↔ 1 = 0 )) |
24 | ringinvnzdiv.a | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) | |
25 | 23, 24 | r19.29a 2618 | . 2 ⊢ (𝜑 → (𝑋 = 0 ↔ 1 = 0 )) |
26 | 25 | necon3bid 2386 | 1 ⊢ (𝜑 → (𝑋 ≠ 0 ↔ 1 ≠ 0 )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 ∃wrex 2454 ‘cfv 5208 (class class class)co 5865 Basecbs 12427 .rcmulr 12492 0gc0g 12625 1rcur 12935 Ringcrg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12430 df-slot 12431 df-base 12433 df-sets 12434 df-plusg 12504 df-mulr 12505 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-grp 12740 df-mgp 12926 df-ur 12936 df-ring 12974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |