ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsnlem GIF version

Theorem difinfsnlem 7201
Description: Lemma for difinfsn 7202. The case where we need to swap 𝐵 and (inr‘∅) in building the mapping 𝐺. (Contributed by Jim Kingdon, 9-Aug-2023.)
Hypotheses
Ref Expression
difinfsnlem.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
difinfsnlem.b (𝜑𝐵𝐴)
difinfsnlem.f (𝜑𝐹:(ω ⊔ 1o)–1-1𝐴)
difinfsnlem.fb (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵)
difinfsnlem.g 𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))))
Assertion
Ref Expression
difinfsnlem (𝜑𝐺:ω–1-1→(𝐴 ∖ {𝐵}))
Distinct variable groups:   𝐴,𝑛,𝑥,𝑦   𝐵,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)

Proof of Theorem difinfsnlem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 difinfsnlem.f . . . . . . . 8 (𝜑𝐹:(ω ⊔ 1o)–1-1𝐴)
2 f1f 5481 . . . . . . . 8 (𝐹:(ω ⊔ 1o)–1-1𝐴𝐹:(ω ⊔ 1o)⟶𝐴)
31, 2syl 14 . . . . . . 7 (𝜑𝐹:(ω ⊔ 1o)⟶𝐴)
4 0lt1o 6526 . . . . . . . 8 ∅ ∈ 1o
5 djurcl 7154 . . . . . . . 8 (∅ ∈ 1o → (inr‘∅) ∈ (ω ⊔ 1o))
64, 5mp1i 10 . . . . . . 7 (𝜑 → (inr‘∅) ∈ (ω ⊔ 1o))
73, 6ffvelcdmd 5716 . . . . . 6 (𝜑 → (𝐹‘(inr‘∅)) ∈ 𝐴)
8 difinfsnlem.fb . . . . . . 7 (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵)
9 elsni 3651 . . . . . . . 8 ((𝐹‘(inr‘∅)) ∈ {𝐵} → (𝐹‘(inr‘∅)) = 𝐵)
109necon3ai 2425 . . . . . . 7 ((𝐹‘(inr‘∅)) ≠ 𝐵 → ¬ (𝐹‘(inr‘∅)) ∈ {𝐵})
118, 10syl 14 . . . . . 6 (𝜑 → ¬ (𝐹‘(inr‘∅)) ∈ {𝐵})
127, 11eldifd 3176 . . . . 5 (𝜑 → (𝐹‘(inr‘∅)) ∈ (𝐴 ∖ {𝐵}))
1312ad2antrr 488 . . . 4 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inr‘∅)) ∈ (𝐴 ∖ {𝐵}))
143adantr 276 . . . . . . 7 ((𝜑𝑛 ∈ ω) → 𝐹:(ω ⊔ 1o)⟶𝐴)
15 djulcl 7153 . . . . . . . 8 (𝑛 ∈ ω → (inl‘𝑛) ∈ (ω ⊔ 1o))
1615adantl 277 . . . . . . 7 ((𝜑𝑛 ∈ ω) → (inl‘𝑛) ∈ (ω ⊔ 1o))
1714, 16ffvelcdmd 5716 . . . . . 6 ((𝜑𝑛 ∈ ω) → (𝐹‘(inl‘𝑛)) ∈ 𝐴)
1817adantr 276 . . . . 5 (((𝜑𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inl‘𝑛)) ∈ 𝐴)
19 elsni 3651 . . . . . . 7 ((𝐹‘(inl‘𝑛)) ∈ {𝐵} → (𝐹‘(inl‘𝑛)) = 𝐵)
2019con3i 633 . . . . . 6 (¬ (𝐹‘(inl‘𝑛)) = 𝐵 → ¬ (𝐹‘(inl‘𝑛)) ∈ {𝐵})
2120adantl 277 . . . . 5 (((𝜑𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) ∈ {𝐵})
2218, 21eldifd 3176 . . . 4 (((𝜑𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inl‘𝑛)) ∈ (𝐴 ∖ {𝐵}))
23 difinfsnlem.dc . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2423adantr 276 . . . . 5 ((𝜑𝑛 ∈ ω) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
25 difinfsnlem.b . . . . . . 7 (𝜑𝐵𝐴)
2625adantr 276 . . . . . 6 ((𝜑𝑛 ∈ ω) → 𝐵𝐴)
27 eqeq12 2218 . . . . . . . 8 ((𝑥 = (𝐹‘(inl‘𝑛)) ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ (𝐹‘(inl‘𝑛)) = 𝐵))
2827dcbid 840 . . . . . . 7 ((𝑥 = (𝐹‘(inl‘𝑛)) ∧ 𝑦 = 𝐵) → (DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑛)) = 𝐵))
2928rspc2gv 2889 . . . . . 6 (((𝐹‘(inl‘𝑛)) ∈ 𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑛)) = 𝐵))
3017, 26, 29syl2anc 411 . . . . 5 ((𝜑𝑛 ∈ ω) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑛)) = 𝐵))
3124, 30mpd 13 . . . 4 ((𝜑𝑛 ∈ ω) → DECID (𝐹‘(inl‘𝑛)) = 𝐵)
3213, 22, 31ifcldadc 3600 . . 3 ((𝜑𝑛 ∈ ω) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵}))
3332ralrimiva 2579 . 2 (𝜑 → ∀𝑛 ∈ ω if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵}))
34 simplr 528 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = 𝐵)
35 simpr 110 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑚)) = 𝐵)
3634, 35eqtr4d 2241 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)))
371ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔ 1o)–1-1𝐴)
3815ad2antrl 490 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (inl‘𝑛) ∈ (ω ⊔ 1o))
3938ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔ 1o))
40 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝑚 ∈ ω)
4140ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑚 ∈ ω)
42 djulcl 7153 . . . . . . . . . 10 (𝑚 ∈ ω → (inl‘𝑚) ∈ (ω ⊔ 1o))
4341, 42syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔ 1o))
44 f1veqaeq 5838 . . . . . . . . 9 ((𝐹:(ω ⊔ 1o)–1-1𝐴 ∧ ((inl‘𝑛) ∈ (ω ⊔ 1o) ∧ (inl‘𝑚) ∈ (ω ⊔ 1o))) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚)))
4537, 39, 43, 44syl12anc 1248 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚)))
4636, 45mpd 13 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) = (inl‘𝑚))
47 inl11 7167 . . . . . . . 8 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((inl‘𝑛) = (inl‘𝑚) ↔ 𝑛 = 𝑚))
4847ad3antlr 493 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((inl‘𝑛) = (inl‘𝑚) ↔ 𝑛 = 𝑚))
4946, 48mpbid 147 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑛 = 𝑚)
5049a1d 22 . . . . 5 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
5140ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑚 ∈ ω)
52 djune 7180 . . . . . . . . . . 11 ((𝑚 ∈ ω ∧ ∅ ∈ 1o) → (inl‘𝑚) ≠ (inr‘∅))
5352necomd 2462 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ ∅ ∈ 1o) → (inr‘∅) ≠ (inl‘𝑚))
5451, 4, 53sylancl 413 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ≠ (inl‘𝑚))
5554neneqd 2397 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (inr‘∅) = (inl‘𝑚))
561ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔ 1o)–1-1𝐴)
574, 5mp1i 10 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ∈ (ω ⊔ 1o))
5840, 42syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (inl‘𝑚) ∈ (ω ⊔ 1o))
5958ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔ 1o))
60 f1veqaeq 5838 . . . . . . . . 9 ((𝐹:(ω ⊔ 1o)–1-1𝐴 ∧ ((inr‘∅) ∈ (ω ⊔ 1o) ∧ (inl‘𝑚) ∈ (ω ⊔ 1o))) → ((𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)) → (inr‘∅) = (inl‘𝑚)))
6156, 57, 59, 60syl12anc 1248 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)) → (inr‘∅) = (inl‘𝑚)))
6255, 61mtod 665 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)))
63 simplr 528 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = 𝐵)
6463iftrued 3578 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inr‘∅)))
65 simpr 110 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑚)) = 𝐵)
6665iffalsed 3581 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inl‘𝑚)))
6764, 66eqeq12d 2220 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚))))
6862, 67mtbird 675 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))))
6968pm2.21d 620 . . . . 5 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
7023adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
713adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝐹:(ω ⊔ 1o)⟶𝐴)
7271, 58ffvelcdmd 5716 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (𝐹‘(inl‘𝑚)) ∈ 𝐴)
7325adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝐵𝐴)
74 eqeq12 2218 . . . . . . . . . . 11 ((𝑥 = (𝐹‘(inl‘𝑚)) ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ (𝐹‘(inl‘𝑚)) = 𝐵))
7574dcbid 840 . . . . . . . . . 10 ((𝑥 = (𝐹‘(inl‘𝑚)) ∧ 𝑦 = 𝐵) → (DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑚)) = 𝐵))
7675rspc2gv 2889 . . . . . . . . 9 (((𝐹‘(inl‘𝑚)) ∈ 𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑚)) = 𝐵))
7772, 73, 76syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑚)) = 𝐵))
7870, 77mpd 13 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → DECID (𝐹‘(inl‘𝑚)) = 𝐵)
79 exmiddc 838 . . . . . . 7 (DECID (𝐹‘(inl‘𝑚)) = 𝐵 → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵))
8078, 79syl 14 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵))
8180adantr 276 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵))
8250, 69, 81mpjaodan 800 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
83 simprl 529 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝑛 ∈ ω)
8483ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑛 ∈ ω)
85 djune 7180 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ ∅ ∈ 1o) → (inl‘𝑛) ≠ (inr‘∅))
8684, 4, 85sylancl 413 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ≠ (inr‘∅))
8786neneqd 2397 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (inl‘𝑛) = (inr‘∅))
881ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔ 1o)–1-1𝐴)
8938ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔ 1o))
904, 5mp1i 10 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ∈ (ω ⊔ 1o))
91 f1veqaeq 5838 . . . . . . . . 9 ((𝐹:(ω ⊔ 1o)–1-1𝐴 ∧ ((inl‘𝑛) ∈ (ω ⊔ 1o) ∧ (inr‘∅) ∈ (ω ⊔ 1o))) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)) → (inl‘𝑛) = (inr‘∅)))
9288, 89, 90, 91syl12anc 1248 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)) → (inl‘𝑛) = (inr‘∅)))
9387, 92mtod 665 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)))
94 simplr 528 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = 𝐵)
9594iffalsed 3581 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inl‘𝑛)))
96 simpr 110 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑚)) = 𝐵)
9796iftrued 3578 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inr‘∅)))
9895, 97eqeq12d 2220 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅))))
9993, 98mtbird 675 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))))
10099pm2.21d 620 . . . . 5 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
101 simplr 528 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = 𝐵)
102101iffalsed 3581 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inl‘𝑛)))
103 simpr 110 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑚)) = 𝐵)
104103iffalsed 3581 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inl‘𝑚)))
105102, 104eqeq12d 2220 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚))))
1061ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔ 1o)–1-1𝐴)
10738ad2antrr 488 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔ 1o))
10858ad2antrr 488 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔ 1o))
109106, 107, 108, 44syl12anc 1248 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚)))
110105, 109sylbid 150 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → (inl‘𝑛) = (inl‘𝑚)))
11147ad3antlr 493 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((inl‘𝑛) = (inl‘𝑚) ↔ 𝑛 = 𝑚))
112110, 111sylibd 149 . . . . 5 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
11380adantr 276 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵))
114100, 112, 113mpjaodan 800 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
115 exmiddc 838 . . . . . 6 (DECID (𝐹‘(inl‘𝑛)) = 𝐵 → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵))
11631, 115syl 14 . . . . 5 ((𝜑𝑛 ∈ ω) → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵))
117116adantrr 479 . . . 4 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵))
11882, 114, 117mpjaodan 800 . . 3 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
119118ralrimivva 2588 . 2 (𝜑 → ∀𝑛 ∈ ω ∀𝑚 ∈ ω (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
120 difinfsnlem.g . . 3 𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))))
121 2fveq3 5581 . . . . 5 (𝑛 = 𝑚 → (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)))
122121eqeq1d 2214 . . . 4 (𝑛 = 𝑚 → ((𝐹‘(inl‘𝑛)) = 𝐵 ↔ (𝐹‘(inl‘𝑚)) = 𝐵))
123122, 121ifbieq2d 3595 . . 3 (𝑛 = 𝑚 → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))))
124120, 123f1mpt 5840 . 2 (𝐺:ω–1-1→(𝐴 ∖ {𝐵}) ↔ (∀𝑛 ∈ ω if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵}) ∧ ∀𝑛 ∈ ω ∀𝑚 ∈ ω (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)))
12533, 119, 124sylanbrc 417 1 (𝜑𝐺:ω–1-1→(𝐴 ∖ {𝐵}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2176  wne 2376  wral 2484  cdif 3163  c0 3460  ifcif 3571  {csn 3633  cmpt 4105  ωcom 4638  wf 5267  1-1wf1 5268  cfv 5271  1oc1o 6495  cdju 7139  inlcinl 7147  inrcinr 7148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fv 5279  df-1st 6226  df-1o 6502  df-dju 7140  df-inl 7149  df-inr 7150
This theorem is referenced by:  difinfsn  7202
  Copyright terms: Public domain W3C validator