Step | Hyp | Ref
| Expression |
1 | | difinfsnlem.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(ω ⊔
1o)–1-1→𝐴) |
2 | | f1f 5403 |
. . . . . . . 8
⊢ (𝐹:(ω ⊔
1o)–1-1→𝐴 → 𝐹:(ω ⊔
1o)⟶𝐴) |
3 | 1, 2 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐹:(ω ⊔
1o)⟶𝐴) |
4 | | 0lt1o 6419 |
. . . . . . . 8
⊢ ∅
∈ 1o |
5 | | djurcl 7029 |
. . . . . . . 8
⊢ (∅
∈ 1o → (inr‘∅) ∈ (ω ⊔
1o)) |
6 | 4, 5 | mp1i 10 |
. . . . . . 7
⊢ (𝜑 → (inr‘∅) ∈
(ω ⊔ 1o)) |
7 | 3, 6 | ffvelrnd 5632 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(inr‘∅)) ∈ 𝐴) |
8 | | difinfsnlem.fb |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵) |
9 | | elsni 3601 |
. . . . . . . 8
⊢ ((𝐹‘(inr‘∅))
∈ {𝐵} → (𝐹‘(inr‘∅)) =
𝐵) |
10 | 9 | necon3ai 2389 |
. . . . . . 7
⊢ ((𝐹‘(inr‘∅)) ≠
𝐵 → ¬ (𝐹‘(inr‘∅))
∈ {𝐵}) |
11 | 8, 10 | syl 14 |
. . . . . 6
⊢ (𝜑 → ¬ (𝐹‘(inr‘∅)) ∈ {𝐵}) |
12 | 7, 11 | eldifd 3131 |
. . . . 5
⊢ (𝜑 → (𝐹‘(inr‘∅)) ∈ (𝐴 ∖ {𝐵})) |
13 | 12 | ad2antrr 485 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inr‘∅)) ∈ (𝐴 ∖ {𝐵})) |
14 | 3 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → 𝐹:(ω ⊔
1o)⟶𝐴) |
15 | | djulcl 7028 |
. . . . . . . 8
⊢ (𝑛 ∈ ω →
(inl‘𝑛) ∈
(ω ⊔ 1o)) |
16 | 15 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (inl‘𝑛) ∈ (ω ⊔
1o)) |
17 | 14, 16 | ffvelrnd 5632 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐹‘(inl‘𝑛)) ∈ 𝐴) |
18 | 17 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inl‘𝑛)) ∈ 𝐴) |
19 | | elsni 3601 |
. . . . . . 7
⊢ ((𝐹‘(inl‘𝑛)) ∈ {𝐵} → (𝐹‘(inl‘𝑛)) = 𝐵) |
20 | 19 | con3i 627 |
. . . . . 6
⊢ (¬
(𝐹‘(inl‘𝑛)) = 𝐵 → ¬ (𝐹‘(inl‘𝑛)) ∈ {𝐵}) |
21 | 20 | adantl 275 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) ∈ {𝐵}) |
22 | 18, 21 | eldifd 3131 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inl‘𝑛)) ∈ (𝐴 ∖ {𝐵})) |
23 | | difinfsnlem.dc |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
24 | 23 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
25 | | difinfsnlem.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
26 | 25 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → 𝐵 ∈ 𝐴) |
27 | | eqeq12 2183 |
. . . . . . . 8
⊢ ((𝑥 = (𝐹‘(inl‘𝑛)) ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ (𝐹‘(inl‘𝑛)) = 𝐵)) |
28 | 27 | dcbid 833 |
. . . . . . 7
⊢ ((𝑥 = (𝐹‘(inl‘𝑛)) ∧ 𝑦 = 𝐵) → (DECID 𝑥 = 𝑦 ↔ DECID (𝐹‘(inl‘𝑛)) = 𝐵)) |
29 | 28 | rspc2gv 2846 |
. . . . . 6
⊢ (((𝐹‘(inl‘𝑛)) ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → DECID (𝐹‘(inl‘𝑛)) = 𝐵)) |
30 | 17, 26, 29 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → DECID (𝐹‘(inl‘𝑛)) = 𝐵)) |
31 | 24, 30 | mpd 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → DECID
(𝐹‘(inl‘𝑛)) = 𝐵) |
32 | 13, 22, 31 | ifcldadc 3555 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵})) |
33 | 32 | ralrimiva 2543 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ω if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵})) |
34 | | simplr 525 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = 𝐵) |
35 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑚)) = 𝐵) |
36 | 34, 35 | eqtr4d 2206 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚))) |
37 | 1 | ad3antrrr 489 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔
1o)–1-1→𝐴) |
38 | 15 | ad2antrl 487 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (inl‘𝑛) ∈ (ω ⊔
1o)) |
39 | 38 | ad2antrr 485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔
1o)) |
40 | | simprr 527 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝑚 ∈ ω) |
41 | 40 | ad2antrr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑚 ∈ ω) |
42 | | djulcl 7028 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ω →
(inl‘𝑚) ∈
(ω ⊔ 1o)) |
43 | 41, 42 | syl 14 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔
1o)) |
44 | | f1veqaeq 5748 |
. . . . . . . . 9
⊢ ((𝐹:(ω ⊔
1o)–1-1→𝐴 ∧ ((inl‘𝑛) ∈ (ω ⊔
1o) ∧ (inl‘𝑚) ∈ (ω ⊔ 1o)))
→ ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚))) |
45 | 37, 39, 43, 44 | syl12anc 1231 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚))) |
46 | 36, 45 | mpd 13 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) = (inl‘𝑚)) |
47 | | inl11 7042 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) →
((inl‘𝑛) =
(inl‘𝑚) ↔ 𝑛 = 𝑚)) |
48 | 47 | ad3antlr 490 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((inl‘𝑛) = (inl‘𝑚) ↔ 𝑛 = 𝑚)) |
49 | 46, 48 | mpbid 146 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑛 = 𝑚) |
50 | 49 | a1d 22 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) |
51 | 40 | ad2antrr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑚 ∈ ω) |
52 | | djune 7055 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ω ∧ ∅
∈ 1o) → (inl‘𝑚) ≠ (inr‘∅)) |
53 | 52 | necomd 2426 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ω ∧ ∅
∈ 1o) → (inr‘∅) ≠ (inl‘𝑚)) |
54 | 51, 4, 53 | sylancl 411 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ≠
(inl‘𝑚)) |
55 | 54 | neneqd 2361 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (inr‘∅) =
(inl‘𝑚)) |
56 | 1 | ad3antrrr 489 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔
1o)–1-1→𝐴) |
57 | 4, 5 | mp1i 10 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ∈ (ω
⊔ 1o)) |
58 | 40, 42 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (inl‘𝑚) ∈ (ω ⊔
1o)) |
59 | 58 | ad2antrr 485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔
1o)) |
60 | | f1veqaeq 5748 |
. . . . . . . . 9
⊢ ((𝐹:(ω ⊔
1o)–1-1→𝐴 ∧ ((inr‘∅)
∈ (ω ⊔ 1o) ∧ (inl‘𝑚) ∈ (ω ⊔ 1o)))
→ ((𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)) → (inr‘∅) =
(inl‘𝑚))) |
61 | 56, 57, 59, 60 | syl12anc 1231 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)) → (inr‘∅) =
(inl‘𝑚))) |
62 | 55, 61 | mtod 658 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚))) |
63 | | simplr 525 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = 𝐵) |
64 | 63 | iftrued 3533 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inr‘∅))) |
65 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑚)) = 𝐵) |
66 | 65 | iffalsed 3536 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inl‘𝑚))) |
67 | 64, 66 | eqeq12d 2185 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)))) |
68 | 62, 67 | mtbird 668 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚)))) |
69 | 68 | pm2.21d 614 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) |
70 | 23 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
71 | 3 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝐹:(ω ⊔
1o)⟶𝐴) |
72 | 71, 58 | ffvelrnd 5632 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (𝐹‘(inl‘𝑚)) ∈ 𝐴) |
73 | 25 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝐵 ∈ 𝐴) |
74 | | eqeq12 2183 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝐹‘(inl‘𝑚)) ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ (𝐹‘(inl‘𝑚)) = 𝐵)) |
75 | 74 | dcbid 833 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝐹‘(inl‘𝑚)) ∧ 𝑦 = 𝐵) → (DECID 𝑥 = 𝑦 ↔ DECID (𝐹‘(inl‘𝑚)) = 𝐵)) |
76 | 75 | rspc2gv 2846 |
. . . . . . . . 9
⊢ (((𝐹‘(inl‘𝑚)) ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → DECID (𝐹‘(inl‘𝑚)) = 𝐵)) |
77 | 72, 73, 76 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → DECID (𝐹‘(inl‘𝑚)) = 𝐵)) |
78 | 70, 77 | mpd 13 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → DECID
(𝐹‘(inl‘𝑚)) = 𝐵) |
79 | | exmiddc 831 |
. . . . . . 7
⊢
(DECID (𝐹‘(inl‘𝑚)) = 𝐵 → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵)) |
80 | 78, 79 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵)) |
81 | 80 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵)) |
82 | 50, 69, 81 | mpjaodan 793 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) |
83 | | simprl 526 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝑛 ∈ ω) |
84 | 83 | ad2antrr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑛 ∈ ω) |
85 | | djune 7055 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ ∅
∈ 1o) → (inl‘𝑛) ≠ (inr‘∅)) |
86 | 84, 4, 85 | sylancl 411 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ≠ (inr‘∅)) |
87 | 86 | neneqd 2361 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (inl‘𝑛) = (inr‘∅)) |
88 | 1 | ad3antrrr 489 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔
1o)–1-1→𝐴) |
89 | 38 | ad2antrr 485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔
1o)) |
90 | 4, 5 | mp1i 10 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ∈ (ω
⊔ 1o)) |
91 | | f1veqaeq 5748 |
. . . . . . . . 9
⊢ ((𝐹:(ω ⊔
1o)–1-1→𝐴 ∧ ((inl‘𝑛) ∈ (ω ⊔
1o) ∧ (inr‘∅) ∈ (ω ⊔
1o))) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)) →
(inl‘𝑛) =
(inr‘∅))) |
92 | 88, 89, 90, 91 | syl12anc 1231 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)) →
(inl‘𝑛) =
(inr‘∅))) |
93 | 87, 92 | mtod 658 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅))) |
94 | | simplr 525 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = 𝐵) |
95 | 94 | iffalsed 3536 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inl‘𝑛))) |
96 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑚)) = 𝐵) |
97 | 96 | iftrued 3533 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inr‘∅))) |
98 | 95, 97 | eqeq12d 2185 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)))) |
99 | 93, 98 | mtbird 668 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚)))) |
100 | 99 | pm2.21d 614 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) |
101 | | simplr 525 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = 𝐵) |
102 | 101 | iffalsed 3536 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inl‘𝑛))) |
103 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑚)) = 𝐵) |
104 | 103 | iffalsed 3536 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inl‘𝑚))) |
105 | 102, 104 | eqeq12d 2185 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)))) |
106 | 1 | ad3antrrr 489 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔
1o)–1-1→𝐴) |
107 | 38 | ad2antrr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔
1o)) |
108 | 58 | ad2antrr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔
1o)) |
109 | 106, 107,
108, 44 | syl12anc 1231 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚))) |
110 | 105, 109 | sylbid 149 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → (inl‘𝑛) = (inl‘𝑚))) |
111 | 47 | ad3antlr 490 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((inl‘𝑛) = (inl‘𝑚) ↔ 𝑛 = 𝑚)) |
112 | 110, 111 | sylibd 148 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) |
113 | 80 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵)) |
114 | 100, 112,
113 | mpjaodan 793 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) |
115 | | exmiddc 831 |
. . . . . 6
⊢
(DECID (𝐹‘(inl‘𝑛)) = 𝐵 → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵)) |
116 | 31, 115 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵)) |
117 | 116 | adantrr 476 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵)) |
118 | 82, 114, 117 | mpjaodan 793 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) |
119 | 118 | ralrimivva 2552 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ω ∀𝑚 ∈ ω (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) |
120 | | difinfsnlem.g |
. . 3
⊢ 𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛)))) |
121 | | 2fveq3 5501 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚))) |
122 | 121 | eqeq1d 2179 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝐹‘(inl‘𝑛)) = 𝐵 ↔ (𝐹‘(inl‘𝑚)) = 𝐵)) |
123 | 122, 121 | ifbieq2d 3550 |
. . 3
⊢ (𝑛 = 𝑚 → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚)))) |
124 | 120, 123 | f1mpt 5750 |
. 2
⊢ (𝐺:ω–1-1→(𝐴 ∖ {𝐵}) ↔ (∀𝑛 ∈ ω if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵}) ∧ ∀𝑛 ∈ ω ∀𝑚 ∈ ω (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))) |
125 | 33, 119, 124 | sylanbrc 415 |
1
⊢ (𝜑 → 𝐺:ω–1-1→(𝐴 ∖ {𝐵})) |