ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsnlem GIF version

Theorem difinfsnlem 7100
Description: Lemma for difinfsn 7101. The case where we need to swap 𝐡 and (inrβ€˜βˆ…) in building the mapping 𝐺. (Contributed by Jim Kingdon, 9-Aug-2023.)
Hypotheses
Ref Expression
difinfsnlem.dc (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦)
difinfsnlem.b (πœ‘ β†’ 𝐡 ∈ 𝐴)
difinfsnlem.f (πœ‘ β†’ 𝐹:(Ο‰ βŠ” 1o)–1-1→𝐴)
difinfsnlem.fb (πœ‘ β†’ (πΉβ€˜(inrβ€˜βˆ…)) β‰  𝐡)
difinfsnlem.g 𝐺 = (𝑛 ∈ Ο‰ ↦ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))))
Assertion
Ref Expression
difinfsnlem (πœ‘ β†’ 𝐺:ω–1-1β†’(𝐴 βˆ– {𝐡}))
Distinct variable groups:   𝐴,𝑛,π‘₯,𝑦   𝐡,𝑛,π‘₯,𝑦   𝑛,𝐹,π‘₯,𝑦   πœ‘,𝑛
Allowed substitution hints:   πœ‘(π‘₯,𝑦)   𝐺(π‘₯,𝑦,𝑛)

Proof of Theorem difinfsnlem
Dummy variable π‘š is distinct from all other variables.
StepHypRef Expression
1 difinfsnlem.f . . . . . . . 8 (πœ‘ β†’ 𝐹:(Ο‰ βŠ” 1o)–1-1→𝐴)
2 f1f 5423 . . . . . . . 8 (𝐹:(Ο‰ βŠ” 1o)–1-1→𝐴 β†’ 𝐹:(Ο‰ βŠ” 1o)⟢𝐴)
31, 2syl 14 . . . . . . 7 (πœ‘ β†’ 𝐹:(Ο‰ βŠ” 1o)⟢𝐴)
4 0lt1o 6443 . . . . . . . 8 βˆ… ∈ 1o
5 djurcl 7053 . . . . . . . 8 (βˆ… ∈ 1o β†’ (inrβ€˜βˆ…) ∈ (Ο‰ βŠ” 1o))
64, 5mp1i 10 . . . . . . 7 (πœ‘ β†’ (inrβ€˜βˆ…) ∈ (Ο‰ βŠ” 1o))
73, 6ffvelcdmd 5654 . . . . . 6 (πœ‘ β†’ (πΉβ€˜(inrβ€˜βˆ…)) ∈ 𝐴)
8 difinfsnlem.fb . . . . . . 7 (πœ‘ β†’ (πΉβ€˜(inrβ€˜βˆ…)) β‰  𝐡)
9 elsni 3612 . . . . . . . 8 ((πΉβ€˜(inrβ€˜βˆ…)) ∈ {𝐡} β†’ (πΉβ€˜(inrβ€˜βˆ…)) = 𝐡)
109necon3ai 2396 . . . . . . 7 ((πΉβ€˜(inrβ€˜βˆ…)) β‰  𝐡 β†’ Β¬ (πΉβ€˜(inrβ€˜βˆ…)) ∈ {𝐡})
118, 10syl 14 . . . . . 6 (πœ‘ β†’ Β¬ (πΉβ€˜(inrβ€˜βˆ…)) ∈ {𝐡})
127, 11eldifd 3141 . . . . 5 (πœ‘ β†’ (πΉβ€˜(inrβ€˜βˆ…)) ∈ (𝐴 βˆ– {𝐡}))
1312ad2antrr 488 . . . 4 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) β†’ (πΉβ€˜(inrβ€˜βˆ…)) ∈ (𝐴 βˆ– {𝐡}))
143adantr 276 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ 𝐹:(Ο‰ βŠ” 1o)⟢𝐴)
15 djulcl 7052 . . . . . . . 8 (𝑛 ∈ Ο‰ β†’ (inlβ€˜π‘›) ∈ (Ο‰ βŠ” 1o))
1615adantl 277 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ (inlβ€˜π‘›) ∈ (Ο‰ βŠ” 1o))
1714, 16ffvelcdmd 5654 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ (πΉβ€˜(inlβ€˜π‘›)) ∈ 𝐴)
1817adantr 276 . . . . 5 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) β†’ (πΉβ€˜(inlβ€˜π‘›)) ∈ 𝐴)
19 elsni 3612 . . . . . . 7 ((πΉβ€˜(inlβ€˜π‘›)) ∈ {𝐡} β†’ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡)
2019con3i 632 . . . . . 6 (Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡 β†’ Β¬ (πΉβ€˜(inlβ€˜π‘›)) ∈ {𝐡})
2120adantl 277 . . . . 5 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) β†’ Β¬ (πΉβ€˜(inlβ€˜π‘›)) ∈ {𝐡})
2218, 21eldifd 3141 . . . 4 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) β†’ (πΉβ€˜(inlβ€˜π‘›)) ∈ (𝐴 βˆ– {𝐡}))
23 difinfsnlem.dc . . . . . 6 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦)
2423adantr 276 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦)
25 difinfsnlem.b . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ 𝐴)
2625adantr 276 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ 𝐡 ∈ 𝐴)
27 eqeq12 2190 . . . . . . . 8 ((π‘₯ = (πΉβ€˜(inlβ€˜π‘›)) ∧ 𝑦 = 𝐡) β†’ (π‘₯ = 𝑦 ↔ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡))
2827dcbid 838 . . . . . . 7 ((π‘₯ = (πΉβ€˜(inlβ€˜π‘›)) ∧ 𝑦 = 𝐡) β†’ (DECID π‘₯ = 𝑦 ↔ DECID (πΉβ€˜(inlβ€˜π‘›)) = 𝐡))
2928rspc2gv 2855 . . . . . 6 (((πΉβ€˜(inlβ€˜π‘›)) ∈ 𝐴 ∧ 𝐡 ∈ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦 β†’ DECID (πΉβ€˜(inlβ€˜π‘›)) = 𝐡))
3017, 26, 29syl2anc 411 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦 β†’ DECID (πΉβ€˜(inlβ€˜π‘›)) = 𝐡))
3124, 30mpd 13 . . . 4 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ DECID (πΉβ€˜(inlβ€˜π‘›)) = 𝐡)
3213, 22, 31ifcldadc 3565 . . 3 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) ∈ (𝐴 βˆ– {𝐡}))
3332ralrimiva 2550 . 2 (πœ‘ β†’ βˆ€π‘› ∈ Ο‰ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) ∈ (𝐴 βˆ– {𝐡}))
34 simplr 528 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡)
35 simpr 110 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡)
3634, 35eqtr4d 2213 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (πΉβ€˜(inlβ€˜π‘›)) = (πΉβ€˜(inlβ€˜π‘š)))
371ad3antrrr 492 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ 𝐹:(Ο‰ βŠ” 1o)–1-1→𝐴)
3815ad2antrl 490 . . . . . . . . . 10 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ (inlβ€˜π‘›) ∈ (Ο‰ βŠ” 1o))
3938ad2antrr 488 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inlβ€˜π‘›) ∈ (Ο‰ βŠ” 1o))
40 simprr 531 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ π‘š ∈ Ο‰)
4140ad2antrr 488 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ π‘š ∈ Ο‰)
42 djulcl 7052 . . . . . . . . . 10 (π‘š ∈ Ο‰ β†’ (inlβ€˜π‘š) ∈ (Ο‰ βŠ” 1o))
4341, 42syl 14 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inlβ€˜π‘š) ∈ (Ο‰ βŠ” 1o))
44 f1veqaeq 5772 . . . . . . . . 9 ((𝐹:(Ο‰ βŠ” 1o)–1-1→𝐴 ∧ ((inlβ€˜π‘›) ∈ (Ο‰ βŠ” 1o) ∧ (inlβ€˜π‘š) ∈ (Ο‰ βŠ” 1o))) β†’ ((πΉβ€˜(inlβ€˜π‘›)) = (πΉβ€˜(inlβ€˜π‘š)) β†’ (inlβ€˜π‘›) = (inlβ€˜π‘š)))
4537, 39, 43, 44syl12anc 1236 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ ((πΉβ€˜(inlβ€˜π‘›)) = (πΉβ€˜(inlβ€˜π‘š)) β†’ (inlβ€˜π‘›) = (inlβ€˜π‘š)))
4636, 45mpd 13 . . . . . . 7 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inlβ€˜π‘›) = (inlβ€˜π‘š))
47 inl11 7066 . . . . . . . 8 ((𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰) β†’ ((inlβ€˜π‘›) = (inlβ€˜π‘š) ↔ 𝑛 = π‘š))
4847ad3antlr 493 . . . . . . 7 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ ((inlβ€˜π‘›) = (inlβ€˜π‘š) ↔ 𝑛 = π‘š))
4946, 48mpbid 147 . . . . . 6 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ 𝑛 = π‘š)
5049a1d 22 . . . . 5 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) β†’ 𝑛 = π‘š))
5140ad2antrr 488 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ π‘š ∈ Ο‰)
52 djune 7079 . . . . . . . . . . 11 ((π‘š ∈ Ο‰ ∧ βˆ… ∈ 1o) β†’ (inlβ€˜π‘š) β‰  (inrβ€˜βˆ…))
5352necomd 2433 . . . . . . . . . 10 ((π‘š ∈ Ο‰ ∧ βˆ… ∈ 1o) β†’ (inrβ€˜βˆ…) β‰  (inlβ€˜π‘š))
5451, 4, 53sylancl 413 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inrβ€˜βˆ…) β‰  (inlβ€˜π‘š))
5554neneqd 2368 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ Β¬ (inrβ€˜βˆ…) = (inlβ€˜π‘š))
561ad3antrrr 492 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ 𝐹:(Ο‰ βŠ” 1o)–1-1→𝐴)
574, 5mp1i 10 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inrβ€˜βˆ…) ∈ (Ο‰ βŠ” 1o))
5840, 42syl 14 . . . . . . . . . 10 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ (inlβ€˜π‘š) ∈ (Ο‰ βŠ” 1o))
5958ad2antrr 488 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inlβ€˜π‘š) ∈ (Ο‰ βŠ” 1o))
60 f1veqaeq 5772 . . . . . . . . 9 ((𝐹:(Ο‰ βŠ” 1o)–1-1→𝐴 ∧ ((inrβ€˜βˆ…) ∈ (Ο‰ βŠ” 1o) ∧ (inlβ€˜π‘š) ∈ (Ο‰ βŠ” 1o))) β†’ ((πΉβ€˜(inrβ€˜βˆ…)) = (πΉβ€˜(inlβ€˜π‘š)) β†’ (inrβ€˜βˆ…) = (inlβ€˜π‘š)))
6156, 57, 59, 60syl12anc 1236 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ ((πΉβ€˜(inrβ€˜βˆ…)) = (πΉβ€˜(inlβ€˜π‘š)) β†’ (inrβ€˜βˆ…) = (inlβ€˜π‘š)))
6255, 61mtod 663 . . . . . . 7 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ Β¬ (πΉβ€˜(inrβ€˜βˆ…)) = (πΉβ€˜(inlβ€˜π‘š)))
63 simplr 528 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡)
6463iftrued 3543 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = (πΉβ€˜(inrβ€˜βˆ…)))
65 simpr 110 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡)
6665iffalsed 3546 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) = (πΉβ€˜(inlβ€˜π‘š)))
6764, 66eqeq12d 2192 . . . . . . 7 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) ↔ (πΉβ€˜(inrβ€˜βˆ…)) = (πΉβ€˜(inlβ€˜π‘š))))
6862, 67mtbird 673 . . . . . 6 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ Β¬ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))))
6968pm2.21d 619 . . . . 5 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) β†’ 𝑛 = π‘š))
7023adantr 276 . . . . . . . 8 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦)
713adantr 276 . . . . . . . . . 10 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ 𝐹:(Ο‰ βŠ” 1o)⟢𝐴)
7271, 58ffvelcdmd 5654 . . . . . . . . 9 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ (πΉβ€˜(inlβ€˜π‘š)) ∈ 𝐴)
7325adantr 276 . . . . . . . . 9 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ 𝐡 ∈ 𝐴)
74 eqeq12 2190 . . . . . . . . . . 11 ((π‘₯ = (πΉβ€˜(inlβ€˜π‘š)) ∧ 𝑦 = 𝐡) β†’ (π‘₯ = 𝑦 ↔ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡))
7574dcbid 838 . . . . . . . . . 10 ((π‘₯ = (πΉβ€˜(inlβ€˜π‘š)) ∧ 𝑦 = 𝐡) β†’ (DECID π‘₯ = 𝑦 ↔ DECID (πΉβ€˜(inlβ€˜π‘š)) = 𝐡))
7675rspc2gv 2855 . . . . . . . . 9 (((πΉβ€˜(inlβ€˜π‘š)) ∈ 𝐴 ∧ 𝐡 ∈ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦 β†’ DECID (πΉβ€˜(inlβ€˜π‘š)) = 𝐡))
7772, 73, 76syl2anc 411 . . . . . . . 8 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦 β†’ DECID (πΉβ€˜(inlβ€˜π‘š)) = 𝐡))
7870, 77mpd 13 . . . . . . 7 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ DECID (πΉβ€˜(inlβ€˜π‘š)) = 𝐡)
79 exmiddc 836 . . . . . . 7 (DECID (πΉβ€˜(inlβ€˜π‘š)) = 𝐡 β†’ ((πΉβ€˜(inlβ€˜π‘š)) = 𝐡 ∨ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡))
8078, 79syl 14 . . . . . 6 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ ((πΉβ€˜(inlβ€˜π‘š)) = 𝐡 ∨ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡))
8180adantr 276 . . . . 5 (((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) β†’ ((πΉβ€˜(inlβ€˜π‘š)) = 𝐡 ∨ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡))
8250, 69, 81mpjaodan 798 . . . 4 (((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) β†’ 𝑛 = π‘š))
83 simprl 529 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ 𝑛 ∈ Ο‰)
8483ad2antrr 488 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ 𝑛 ∈ Ο‰)
85 djune 7079 . . . . . . . . . 10 ((𝑛 ∈ Ο‰ ∧ βˆ… ∈ 1o) β†’ (inlβ€˜π‘›) β‰  (inrβ€˜βˆ…))
8684, 4, 85sylancl 413 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inlβ€˜π‘›) β‰  (inrβ€˜βˆ…))
8786neneqd 2368 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ Β¬ (inlβ€˜π‘›) = (inrβ€˜βˆ…))
881ad3antrrr 492 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ 𝐹:(Ο‰ βŠ” 1o)–1-1→𝐴)
8938ad2antrr 488 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inlβ€˜π‘›) ∈ (Ο‰ βŠ” 1o))
904, 5mp1i 10 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inrβ€˜βˆ…) ∈ (Ο‰ βŠ” 1o))
91 f1veqaeq 5772 . . . . . . . . 9 ((𝐹:(Ο‰ βŠ” 1o)–1-1→𝐴 ∧ ((inlβ€˜π‘›) ∈ (Ο‰ βŠ” 1o) ∧ (inrβ€˜βˆ…) ∈ (Ο‰ βŠ” 1o))) β†’ ((πΉβ€˜(inlβ€˜π‘›)) = (πΉβ€˜(inrβ€˜βˆ…)) β†’ (inlβ€˜π‘›) = (inrβ€˜βˆ…)))
9288, 89, 90, 91syl12anc 1236 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ ((πΉβ€˜(inlβ€˜π‘›)) = (πΉβ€˜(inrβ€˜βˆ…)) β†’ (inlβ€˜π‘›) = (inrβ€˜βˆ…)))
9387, 92mtod 663 . . . . . . 7 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = (πΉβ€˜(inrβ€˜βˆ…)))
94 simplr 528 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡)
9594iffalsed 3546 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = (πΉβ€˜(inlβ€˜π‘›)))
96 simpr 110 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡)
9796iftrued 3543 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) = (πΉβ€˜(inrβ€˜βˆ…)))
9895, 97eqeq12d 2192 . . . . . . 7 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) ↔ (πΉβ€˜(inlβ€˜π‘›)) = (πΉβ€˜(inrβ€˜βˆ…))))
9993, 98mtbird 673 . . . . . 6 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ Β¬ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))))
10099pm2.21d 619 . . . . 5 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) β†’ 𝑛 = π‘š))
101 simplr 528 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡)
102101iffalsed 3546 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = (πΉβ€˜(inlβ€˜π‘›)))
103 simpr 110 . . . . . . . . 9 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡)
104103iffalsed 3546 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) = (πΉβ€˜(inlβ€˜π‘š)))
105102, 104eqeq12d 2192 . . . . . . 7 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) ↔ (πΉβ€˜(inlβ€˜π‘›)) = (πΉβ€˜(inlβ€˜π‘š))))
1061ad3antrrr 492 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ 𝐹:(Ο‰ βŠ” 1o)–1-1→𝐴)
10738ad2antrr 488 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inlβ€˜π‘›) ∈ (Ο‰ βŠ” 1o))
10858ad2antrr 488 . . . . . . . 8 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (inlβ€˜π‘š) ∈ (Ο‰ βŠ” 1o))
109106, 107, 108, 44syl12anc 1236 . . . . . . 7 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ ((πΉβ€˜(inlβ€˜π‘›)) = (πΉβ€˜(inlβ€˜π‘š)) β†’ (inlβ€˜π‘›) = (inlβ€˜π‘š)))
110105, 109sylbid 150 . . . . . 6 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) β†’ (inlβ€˜π‘›) = (inlβ€˜π‘š)))
11147ad3antlr 493 . . . . . 6 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ ((inlβ€˜π‘›) = (inlβ€˜π‘š) ↔ 𝑛 = π‘š))
112110, 111sylibd 149 . . . . 5 ((((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) β†’ 𝑛 = π‘š))
11380adantr 276 . . . . 5 (((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) β†’ ((πΉβ€˜(inlβ€˜π‘š)) = 𝐡 ∨ Β¬ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡))
114100, 112, 113mpjaodan 798 . . . 4 (((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) ∧ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) β†’ 𝑛 = π‘š))
115 exmiddc 836 . . . . . 6 (DECID (πΉβ€˜(inlβ€˜π‘›)) = 𝐡 β†’ ((πΉβ€˜(inlβ€˜π‘›)) = 𝐡 ∨ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡))
11631, 115syl 14 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ ((πΉβ€˜(inlβ€˜π‘›)) = 𝐡 ∨ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡))
117116adantrr 479 . . . 4 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ ((πΉβ€˜(inlβ€˜π‘›)) = 𝐡 ∨ Β¬ (πΉβ€˜(inlβ€˜π‘›)) = 𝐡))
11882, 114, 117mpjaodan 798 . . 3 ((πœ‘ ∧ (𝑛 ∈ Ο‰ ∧ π‘š ∈ Ο‰)) β†’ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) β†’ 𝑛 = π‘š))
119118ralrimivva 2559 . 2 (πœ‘ β†’ βˆ€π‘› ∈ Ο‰ βˆ€π‘š ∈ Ο‰ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) β†’ 𝑛 = π‘š))
120 difinfsnlem.g . . 3 𝐺 = (𝑛 ∈ Ο‰ ↦ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))))
121 2fveq3 5522 . . . . 5 (𝑛 = π‘š β†’ (πΉβ€˜(inlβ€˜π‘›)) = (πΉβ€˜(inlβ€˜π‘š)))
122121eqeq1d 2186 . . . 4 (𝑛 = π‘š β†’ ((πΉβ€˜(inlβ€˜π‘›)) = 𝐡 ↔ (πΉβ€˜(inlβ€˜π‘š)) = 𝐡))
123122, 121ifbieq2d 3560 . . 3 (𝑛 = π‘š β†’ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))))
124120, 123f1mpt 5774 . 2 (𝐺:ω–1-1β†’(𝐴 βˆ– {𝐡}) ↔ (βˆ€π‘› ∈ Ο‰ if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) ∈ (𝐴 βˆ– {𝐡}) ∧ βˆ€π‘› ∈ Ο‰ βˆ€π‘š ∈ Ο‰ (if((πΉβ€˜(inlβ€˜π‘›)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘›))) = if((πΉβ€˜(inlβ€˜π‘š)) = 𝐡, (πΉβ€˜(inrβ€˜βˆ…)), (πΉβ€˜(inlβ€˜π‘š))) β†’ 𝑛 = π‘š)))
12533, 119, 124sylanbrc 417 1 (πœ‘ β†’ 𝐺:ω–1-1β†’(𝐴 βˆ– {𝐡}))
Colors of variables: wff set class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∨ wo 708  DECID wdc 834   = wceq 1353   ∈ wcel 2148   β‰  wne 2347  βˆ€wral 2455   βˆ– cdif 3128  βˆ…c0 3424  ifcif 3536  {csn 3594   ↦ cmpt 4066  Ο‰com 4591  βŸΆwf 5214  β€“1-1β†’wf1 5215  β€˜cfv 5218  1oc1o 6412   βŠ” cdju 7038  inlcinl 7046  inrcinr 7047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fv 5226  df-1st 6143  df-1o 6419  df-dju 7039  df-inl 7048  df-inr 7049
This theorem is referenced by:  difinfsn  7101
  Copyright terms: Public domain W3C validator