Step | Hyp | Ref
| Expression |
1 | | difinfsnlem.f |
. . . . . . . 8
β’ (π β πΉ:(Ο β
1o)β1-1βπ΄) |
2 | | f1f 5423 |
. . . . . . . 8
β’ (πΉ:(Ο β
1o)β1-1βπ΄ β πΉ:(Ο β
1o)βΆπ΄) |
3 | 1, 2 | syl 14 |
. . . . . . 7
β’ (π β πΉ:(Ο β
1o)βΆπ΄) |
4 | | 0lt1o 6443 |
. . . . . . . 8
β’ β
β 1o |
5 | | djurcl 7053 |
. . . . . . . 8
β’ (β
β 1o β (inrββ
) β (Ο β
1o)) |
6 | 4, 5 | mp1i 10 |
. . . . . . 7
β’ (π β (inrββ
) β
(Ο β 1o)) |
7 | 3, 6 | ffvelcdmd 5654 |
. . . . . 6
β’ (π β (πΉβ(inrββ
)) β π΄) |
8 | | difinfsnlem.fb |
. . . . . . 7
β’ (π β (πΉβ(inrββ
)) β π΅) |
9 | | elsni 3612 |
. . . . . . . 8
β’ ((πΉβ(inrββ
))
β {π΅} β (πΉβ(inrββ
)) =
π΅) |
10 | 9 | necon3ai 2396 |
. . . . . . 7
β’ ((πΉβ(inrββ
)) β
π΅ β Β¬ (πΉβ(inrββ
))
β {π΅}) |
11 | 8, 10 | syl 14 |
. . . . . 6
β’ (π β Β¬ (πΉβ(inrββ
)) β {π΅}) |
12 | 7, 11 | eldifd 3141 |
. . . . 5
β’ (π β (πΉβ(inrββ
)) β (π΄ β {π΅})) |
13 | 12 | ad2antrr 488 |
. . . 4
β’ (((π β§ π β Ο) β§ (πΉβ(inlβπ)) = π΅) β (πΉβ(inrββ
)) β (π΄ β {π΅})) |
14 | 3 | adantr 276 |
. . . . . . 7
β’ ((π β§ π β Ο) β πΉ:(Ο β
1o)βΆπ΄) |
15 | | djulcl 7052 |
. . . . . . . 8
β’ (π β Ο β
(inlβπ) β
(Ο β 1o)) |
16 | 15 | adantl 277 |
. . . . . . 7
β’ ((π β§ π β Ο) β (inlβπ) β (Ο β
1o)) |
17 | 14, 16 | ffvelcdmd 5654 |
. . . . . 6
β’ ((π β§ π β Ο) β (πΉβ(inlβπ)) β π΄) |
18 | 17 | adantr 276 |
. . . . 5
β’ (((π β§ π β Ο) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (πΉβ(inlβπ)) β π΄) |
19 | | elsni 3612 |
. . . . . . 7
β’ ((πΉβ(inlβπ)) β {π΅} β (πΉβ(inlβπ)) = π΅) |
20 | 19 | con3i 632 |
. . . . . 6
β’ (Β¬
(πΉβ(inlβπ)) = π΅ β Β¬ (πΉβ(inlβπ)) β {π΅}) |
21 | 20 | adantl 277 |
. . . . 5
β’ (((π β§ π β Ο) β§ Β¬ (πΉβ(inlβπ)) = π΅) β Β¬ (πΉβ(inlβπ)) β {π΅}) |
22 | 18, 21 | eldifd 3141 |
. . . 4
β’ (((π β§ π β Ο) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (πΉβ(inlβπ)) β (π΄ β {π΅})) |
23 | | difinfsnlem.dc |
. . . . . 6
β’ (π β βπ₯ β π΄ βπ¦ β π΄ DECID π₯ = π¦) |
24 | 23 | adantr 276 |
. . . . 5
β’ ((π β§ π β Ο) β βπ₯ β π΄ βπ¦ β π΄ DECID π₯ = π¦) |
25 | | difinfsnlem.b |
. . . . . . 7
β’ (π β π΅ β π΄) |
26 | 25 | adantr 276 |
. . . . . 6
β’ ((π β§ π β Ο) β π΅ β π΄) |
27 | | eqeq12 2190 |
. . . . . . . 8
β’ ((π₯ = (πΉβ(inlβπ)) β§ π¦ = π΅) β (π₯ = π¦ β (πΉβ(inlβπ)) = π΅)) |
28 | 27 | dcbid 838 |
. . . . . . 7
β’ ((π₯ = (πΉβ(inlβπ)) β§ π¦ = π΅) β (DECID π₯ = π¦ β DECID (πΉβ(inlβπ)) = π΅)) |
29 | 28 | rspc2gv 2855 |
. . . . . 6
β’ (((πΉβ(inlβπ)) β π΄ β§ π΅ β π΄) β (βπ₯ β π΄ βπ¦ β π΄ DECID π₯ = π¦ β DECID (πΉβ(inlβπ)) = π΅)) |
30 | 17, 26, 29 | syl2anc 411 |
. . . . 5
β’ ((π β§ π β Ο) β (βπ₯ β π΄ βπ¦ β π΄ DECID π₯ = π¦ β DECID (πΉβ(inlβπ)) = π΅)) |
31 | 24, 30 | mpd 13 |
. . . 4
β’ ((π β§ π β Ο) β DECID
(πΉβ(inlβπ)) = π΅) |
32 | 13, 22, 31 | ifcldadc 3565 |
. . 3
β’ ((π β§ π β Ο) β if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β (π΄ β {π΅})) |
33 | 32 | ralrimiva 2550 |
. 2
β’ (π β βπ β Ο if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β (π΄ β {π΅})) |
34 | | simplr 528 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (πΉβ(inlβπ)) = π΅) |
35 | | simpr 110 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (πΉβ(inlβπ)) = π΅) |
36 | 34, 35 | eqtr4d 2213 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (πΉβ(inlβπ)) = (πΉβ(inlβπ))) |
37 | 1 | ad3antrrr 492 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β πΉ:(Ο β
1o)β1-1βπ΄) |
38 | 15 | ad2antrl 490 |
. . . . . . . . . 10
β’ ((π β§ (π β Ο β§ π β Ο)) β (inlβπ) β (Ο β
1o)) |
39 | 38 | ad2antrr 488 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (inlβπ) β (Ο β
1o)) |
40 | | simprr 531 |
. . . . . . . . . . 11
β’ ((π β§ (π β Ο β§ π β Ο)) β π β Ο) |
41 | 40 | ad2antrr 488 |
. . . . . . . . . 10
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β π β Ο) |
42 | | djulcl 7052 |
. . . . . . . . . 10
β’ (π β Ο β
(inlβπ) β
(Ο β 1o)) |
43 | 41, 42 | syl 14 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (inlβπ) β (Ο β
1o)) |
44 | | f1veqaeq 5772 |
. . . . . . . . 9
β’ ((πΉ:(Ο β
1o)β1-1βπ΄ β§ ((inlβπ) β (Ο β
1o) β§ (inlβπ) β (Ο β 1o)))
β ((πΉβ(inlβπ)) = (πΉβ(inlβπ)) β (inlβπ) = (inlβπ))) |
45 | 37, 39, 43, 44 | syl12anc 1236 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β ((πΉβ(inlβπ)) = (πΉβ(inlβπ)) β (inlβπ) = (inlβπ))) |
46 | 36, 45 | mpd 13 |
. . . . . . 7
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (inlβπ) = (inlβπ)) |
47 | | inl11 7066 |
. . . . . . . 8
β’ ((π β Ο β§ π β Ο) β
((inlβπ) =
(inlβπ) β π = π)) |
48 | 47 | ad3antlr 493 |
. . . . . . 7
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β ((inlβπ) = (inlβπ) β π = π)) |
49 | 46, 48 | mpbid 147 |
. . . . . 6
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β π = π) |
50 | 49 | a1d 22 |
. . . . 5
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β π = π)) |
51 | 40 | ad2antrr 488 |
. . . . . . . . . 10
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β π β Ο) |
52 | | djune 7079 |
. . . . . . . . . . 11
β’ ((π β Ο β§ β
β 1o) β (inlβπ) β (inrββ
)) |
53 | 52 | necomd 2433 |
. . . . . . . . . 10
β’ ((π β Ο β§ β
β 1o) β (inrββ
) β (inlβπ)) |
54 | 51, 4, 53 | sylancl 413 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (inrββ
) β
(inlβπ)) |
55 | 54 | neneqd 2368 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β Β¬ (inrββ
) =
(inlβπ)) |
56 | 1 | ad3antrrr 492 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β πΉ:(Ο β
1o)β1-1βπ΄) |
57 | 4, 5 | mp1i 10 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (inrββ
) β (Ο
β 1o)) |
58 | 40, 42 | syl 14 |
. . . . . . . . . 10
β’ ((π β§ (π β Ο β§ π β Ο)) β (inlβπ) β (Ο β
1o)) |
59 | 58 | ad2antrr 488 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (inlβπ) β (Ο β
1o)) |
60 | | f1veqaeq 5772 |
. . . . . . . . 9
β’ ((πΉ:(Ο β
1o)β1-1βπ΄ β§ ((inrββ
)
β (Ο β 1o) β§ (inlβπ) β (Ο β 1o)))
β ((πΉβ(inrββ
)) = (πΉβ(inlβπ)) β (inrββ
) =
(inlβπ))) |
61 | 56, 57, 59, 60 | syl12anc 1236 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β ((πΉβ(inrββ
)) = (πΉβ(inlβπ)) β (inrββ
) =
(inlβπ))) |
62 | 55, 61 | mtod 663 |
. . . . . . 7
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β Β¬ (πΉβ(inrββ
)) = (πΉβ(inlβπ))) |
63 | | simplr 528 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (πΉβ(inlβπ)) = π΅) |
64 | 63 | iftrued 3543 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = (πΉβ(inrββ
))) |
65 | | simpr 110 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β Β¬ (πΉβ(inlβπ)) = π΅) |
66 | 65 | iffalsed 3546 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = (πΉβ(inlβπ))) |
67 | 64, 66 | eqeq12d 2192 |
. . . . . . 7
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β (πΉβ(inrββ
)) = (πΉβ(inlβπ)))) |
68 | 62, 67 | mtbird 673 |
. . . . . 6
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β Β¬ if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ)))) |
69 | 68 | pm2.21d 619 |
. . . . 5
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β π = π)) |
70 | 23 | adantr 276 |
. . . . . . . 8
β’ ((π β§ (π β Ο β§ π β Ο)) β βπ₯ β π΄ βπ¦ β π΄ DECID π₯ = π¦) |
71 | 3 | adantr 276 |
. . . . . . . . . 10
β’ ((π β§ (π β Ο β§ π β Ο)) β πΉ:(Ο β
1o)βΆπ΄) |
72 | 71, 58 | ffvelcdmd 5654 |
. . . . . . . . 9
β’ ((π β§ (π β Ο β§ π β Ο)) β (πΉβ(inlβπ)) β π΄) |
73 | 25 | adantr 276 |
. . . . . . . . 9
β’ ((π β§ (π β Ο β§ π β Ο)) β π΅ β π΄) |
74 | | eqeq12 2190 |
. . . . . . . . . . 11
β’ ((π₯ = (πΉβ(inlβπ)) β§ π¦ = π΅) β (π₯ = π¦ β (πΉβ(inlβπ)) = π΅)) |
75 | 74 | dcbid 838 |
. . . . . . . . . 10
β’ ((π₯ = (πΉβ(inlβπ)) β§ π¦ = π΅) β (DECID π₯ = π¦ β DECID (πΉβ(inlβπ)) = π΅)) |
76 | 75 | rspc2gv 2855 |
. . . . . . . . 9
β’ (((πΉβ(inlβπ)) β π΄ β§ π΅ β π΄) β (βπ₯ β π΄ βπ¦ β π΄ DECID π₯ = π¦ β DECID (πΉβ(inlβπ)) = π΅)) |
77 | 72, 73, 76 | syl2anc 411 |
. . . . . . . 8
β’ ((π β§ (π β Ο β§ π β Ο)) β (βπ₯ β π΄ βπ¦ β π΄ DECID π₯ = π¦ β DECID (πΉβ(inlβπ)) = π΅)) |
78 | 70, 77 | mpd 13 |
. . . . . . 7
β’ ((π β§ (π β Ο β§ π β Ο)) β DECID
(πΉβ(inlβπ)) = π΅) |
79 | | exmiddc 836 |
. . . . . . 7
β’
(DECID (πΉβ(inlβπ)) = π΅ β ((πΉβ(inlβπ)) = π΅ β¨ Β¬ (πΉβ(inlβπ)) = π΅)) |
80 | 78, 79 | syl 14 |
. . . . . 6
β’ ((π β§ (π β Ο β§ π β Ο)) β ((πΉβ(inlβπ)) = π΅ β¨ Β¬ (πΉβ(inlβπ)) = π΅)) |
81 | 80 | adantr 276 |
. . . . 5
β’ (((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β ((πΉβ(inlβπ)) = π΅ β¨ Β¬ (πΉβ(inlβπ)) = π΅)) |
82 | 50, 69, 81 | mpjaodan 798 |
. . . 4
β’ (((π β§ (π β Ο β§ π β Ο)) β§ (πΉβ(inlβπ)) = π΅) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β π = π)) |
83 | | simprl 529 |
. . . . . . . . . . 11
β’ ((π β§ (π β Ο β§ π β Ο)) β π β Ο) |
84 | 83 | ad2antrr 488 |
. . . . . . . . . 10
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β π β Ο) |
85 | | djune 7079 |
. . . . . . . . . 10
β’ ((π β Ο β§ β
β 1o) β (inlβπ) β (inrββ
)) |
86 | 84, 4, 85 | sylancl 413 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (inlβπ) β (inrββ
)) |
87 | 86 | neneqd 2368 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β Β¬ (inlβπ) = (inrββ
)) |
88 | 1 | ad3antrrr 492 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β πΉ:(Ο β
1o)β1-1βπ΄) |
89 | 38 | ad2antrr 488 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (inlβπ) β (Ο β
1o)) |
90 | 4, 5 | mp1i 10 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (inrββ
) β (Ο
β 1o)) |
91 | | f1veqaeq 5772 |
. . . . . . . . 9
β’ ((πΉ:(Ο β
1o)β1-1βπ΄ β§ ((inlβπ) β (Ο β
1o) β§ (inrββ
) β (Ο β
1o))) β ((πΉβ(inlβπ)) = (πΉβ(inrββ
)) β
(inlβπ) =
(inrββ
))) |
92 | 88, 89, 90, 91 | syl12anc 1236 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β ((πΉβ(inlβπ)) = (πΉβ(inrββ
)) β
(inlβπ) =
(inrββ
))) |
93 | 87, 92 | mtod 663 |
. . . . . . 7
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β Β¬ (πΉβ(inlβπ)) = (πΉβ(inrββ
))) |
94 | | simplr 528 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β Β¬ (πΉβ(inlβπ)) = π΅) |
95 | 94 | iffalsed 3546 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = (πΉβ(inlβπ))) |
96 | | simpr 110 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (πΉβ(inlβπ)) = π΅) |
97 | 96 | iftrued 3543 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = (πΉβ(inrββ
))) |
98 | 95, 97 | eqeq12d 2192 |
. . . . . . 7
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β (πΉβ(inlβπ)) = (πΉβ(inrββ
)))) |
99 | 93, 98 | mtbird 673 |
. . . . . 6
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β Β¬ if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ)))) |
100 | 99 | pm2.21d 619 |
. . . . 5
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ (πΉβ(inlβπ)) = π΅) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β π = π)) |
101 | | simplr 528 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β Β¬ (πΉβ(inlβπ)) = π΅) |
102 | 101 | iffalsed 3546 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = (πΉβ(inlβπ))) |
103 | | simpr 110 |
. . . . . . . . 9
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β Β¬ (πΉβ(inlβπ)) = π΅) |
104 | 103 | iffalsed 3546 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = (πΉβ(inlβπ))) |
105 | 102, 104 | eqeq12d 2192 |
. . . . . . 7
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β (πΉβ(inlβπ)) = (πΉβ(inlβπ)))) |
106 | 1 | ad3antrrr 492 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β πΉ:(Ο β
1o)β1-1βπ΄) |
107 | 38 | ad2antrr 488 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (inlβπ) β (Ο β
1o)) |
108 | 58 | ad2antrr 488 |
. . . . . . . 8
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (inlβπ) β (Ο β
1o)) |
109 | 106, 107,
108, 44 | syl12anc 1236 |
. . . . . . 7
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β ((πΉβ(inlβπ)) = (πΉβ(inlβπ)) β (inlβπ) = (inlβπ))) |
110 | 105, 109 | sylbid 150 |
. . . . . 6
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β (inlβπ) = (inlβπ))) |
111 | 47 | ad3antlr 493 |
. . . . . 6
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β ((inlβπ) = (inlβπ) β π = π)) |
112 | 110, 111 | sylibd 149 |
. . . . 5
β’ ((((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β π = π)) |
113 | 80 | adantr 276 |
. . . . 5
β’ (((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β ((πΉβ(inlβπ)) = π΅ β¨ Β¬ (πΉβ(inlβπ)) = π΅)) |
114 | 100, 112,
113 | mpjaodan 798 |
. . . 4
β’ (((π β§ (π β Ο β§ π β Ο)) β§ Β¬ (πΉβ(inlβπ)) = π΅) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β π = π)) |
115 | | exmiddc 836 |
. . . . . 6
β’
(DECID (πΉβ(inlβπ)) = π΅ β ((πΉβ(inlβπ)) = π΅ β¨ Β¬ (πΉβ(inlβπ)) = π΅)) |
116 | 31, 115 | syl 14 |
. . . . 5
β’ ((π β§ π β Ο) β ((πΉβ(inlβπ)) = π΅ β¨ Β¬ (πΉβ(inlβπ)) = π΅)) |
117 | 116 | adantrr 479 |
. . . 4
β’ ((π β§ (π β Ο β§ π β Ο)) β ((πΉβ(inlβπ)) = π΅ β¨ Β¬ (πΉβ(inlβπ)) = π΅)) |
118 | 82, 114, 117 | mpjaodan 798 |
. . 3
β’ ((π β§ (π β Ο β§ π β Ο)) β (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β π = π)) |
119 | 118 | ralrimivva 2559 |
. 2
β’ (π β βπ β Ο βπ β Ο (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β π = π)) |
120 | | difinfsnlem.g |
. . 3
β’ πΊ = (π β Ο β¦ if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ)))) |
121 | | 2fveq3 5522 |
. . . . 5
β’ (π = π β (πΉβ(inlβπ)) = (πΉβ(inlβπ))) |
122 | 121 | eqeq1d 2186 |
. . . 4
β’ (π = π β ((πΉβ(inlβπ)) = π΅ β (πΉβ(inlβπ)) = π΅)) |
123 | 122, 121 | ifbieq2d 3560 |
. . 3
β’ (π = π β if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ)))) |
124 | 120, 123 | f1mpt 5774 |
. 2
β’ (πΊ:Οβ1-1β(π΄ β {π΅}) β (βπ β Ο if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β (π΄ β {π΅}) β§ βπ β Ο βπ β Ο (if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) = if((πΉβ(inlβπ)) = π΅, (πΉβ(inrββ
)), (πΉβ(inlβπ))) β π = π))) |
125 | 33, 119, 124 | sylanbrc 417 |
1
β’ (π β πΊ:Οβ1-1β(π΄ β {π΅})) |