| Step | Hyp | Ref
 | Expression | 
| 1 |   | difinfsnlem.f | 
. . . . . . . 8
⊢ (𝜑 → 𝐹:(ω ⊔
1o)–1-1→𝐴) | 
| 2 |   | f1f 5463 | 
. . . . . . . 8
⊢ (𝐹:(ω ⊔
1o)–1-1→𝐴 → 𝐹:(ω ⊔
1o)⟶𝐴) | 
| 3 | 1, 2 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → 𝐹:(ω ⊔
1o)⟶𝐴) | 
| 4 |   | 0lt1o 6498 | 
. . . . . . . 8
⊢ ∅
∈ 1o | 
| 5 |   | djurcl 7118 | 
. . . . . . . 8
⊢ (∅
∈ 1o → (inr‘∅) ∈ (ω ⊔
1o)) | 
| 6 | 4, 5 | mp1i 10 | 
. . . . . . 7
⊢ (𝜑 → (inr‘∅) ∈
(ω ⊔ 1o)) | 
| 7 | 3, 6 | ffvelcdmd 5698 | 
. . . . . 6
⊢ (𝜑 → (𝐹‘(inr‘∅)) ∈ 𝐴) | 
| 8 |   | difinfsnlem.fb | 
. . . . . . 7
⊢ (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵) | 
| 9 |   | elsni 3640 | 
. . . . . . . 8
⊢ ((𝐹‘(inr‘∅))
∈ {𝐵} → (𝐹‘(inr‘∅)) =
𝐵) | 
| 10 | 9 | necon3ai 2416 | 
. . . . . . 7
⊢ ((𝐹‘(inr‘∅)) ≠
𝐵 → ¬ (𝐹‘(inr‘∅))
∈ {𝐵}) | 
| 11 | 8, 10 | syl 14 | 
. . . . . 6
⊢ (𝜑 → ¬ (𝐹‘(inr‘∅)) ∈ {𝐵}) | 
| 12 | 7, 11 | eldifd 3167 | 
. . . . 5
⊢ (𝜑 → (𝐹‘(inr‘∅)) ∈ (𝐴 ∖ {𝐵})) | 
| 13 | 12 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inr‘∅)) ∈ (𝐴 ∖ {𝐵})) | 
| 14 | 3 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → 𝐹:(ω ⊔
1o)⟶𝐴) | 
| 15 |   | djulcl 7117 | 
. . . . . . . 8
⊢ (𝑛 ∈ ω →
(inl‘𝑛) ∈
(ω ⊔ 1o)) | 
| 16 | 15 | adantl 277 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (inl‘𝑛) ∈ (ω ⊔
1o)) | 
| 17 | 14, 16 | ffvelcdmd 5698 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐹‘(inl‘𝑛)) ∈ 𝐴) | 
| 18 | 17 | adantr 276 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inl‘𝑛)) ∈ 𝐴) | 
| 19 |   | elsni 3640 | 
. . . . . . 7
⊢ ((𝐹‘(inl‘𝑛)) ∈ {𝐵} → (𝐹‘(inl‘𝑛)) = 𝐵) | 
| 20 | 19 | con3i 633 | 
. . . . . 6
⊢ (¬
(𝐹‘(inl‘𝑛)) = 𝐵 → ¬ (𝐹‘(inl‘𝑛)) ∈ {𝐵}) | 
| 21 | 20 | adantl 277 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) ∈ {𝐵}) | 
| 22 | 18, 21 | eldifd 3167 | 
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inl‘𝑛)) ∈ (𝐴 ∖ {𝐵})) | 
| 23 |   | difinfsnlem.dc | 
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| 24 | 23 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| 25 |   | difinfsnlem.b | 
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝐴) | 
| 26 | 25 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → 𝐵 ∈ 𝐴) | 
| 27 |   | eqeq12 2209 | 
. . . . . . . 8
⊢ ((𝑥 = (𝐹‘(inl‘𝑛)) ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ (𝐹‘(inl‘𝑛)) = 𝐵)) | 
| 28 | 27 | dcbid 839 | 
. . . . . . 7
⊢ ((𝑥 = (𝐹‘(inl‘𝑛)) ∧ 𝑦 = 𝐵) → (DECID 𝑥 = 𝑦 ↔ DECID (𝐹‘(inl‘𝑛)) = 𝐵)) | 
| 29 | 28 | rspc2gv 2880 | 
. . . . . 6
⊢ (((𝐹‘(inl‘𝑛)) ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → DECID (𝐹‘(inl‘𝑛)) = 𝐵)) | 
| 30 | 17, 26, 29 | syl2anc 411 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → DECID (𝐹‘(inl‘𝑛)) = 𝐵)) | 
| 31 | 24, 30 | mpd 13 | 
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → DECID
(𝐹‘(inl‘𝑛)) = 𝐵) | 
| 32 | 13, 22, 31 | ifcldadc 3590 | 
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵})) | 
| 33 | 32 | ralrimiva 2570 | 
. 2
⊢ (𝜑 → ∀𝑛 ∈ ω if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵})) | 
| 34 |   | simplr 528 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = 𝐵) | 
| 35 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑚)) = 𝐵) | 
| 36 | 34, 35 | eqtr4d 2232 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚))) | 
| 37 | 1 | ad3antrrr 492 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔
1o)–1-1→𝐴) | 
| 38 | 15 | ad2antrl 490 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (inl‘𝑛) ∈ (ω ⊔
1o)) | 
| 39 | 38 | ad2antrr 488 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔
1o)) | 
| 40 |   | simprr 531 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝑚 ∈ ω) | 
| 41 | 40 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑚 ∈ ω) | 
| 42 |   | djulcl 7117 | 
. . . . . . . . . 10
⊢ (𝑚 ∈ ω →
(inl‘𝑚) ∈
(ω ⊔ 1o)) | 
| 43 | 41, 42 | syl 14 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔
1o)) | 
| 44 |   | f1veqaeq 5816 | 
. . . . . . . . 9
⊢ ((𝐹:(ω ⊔
1o)–1-1→𝐴 ∧ ((inl‘𝑛) ∈ (ω ⊔
1o) ∧ (inl‘𝑚) ∈ (ω ⊔ 1o)))
→ ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚))) | 
| 45 | 37, 39, 43, 44 | syl12anc 1247 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚))) | 
| 46 | 36, 45 | mpd 13 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) = (inl‘𝑚)) | 
| 47 |   | inl11 7131 | 
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) →
((inl‘𝑛) =
(inl‘𝑚) ↔ 𝑛 = 𝑚)) | 
| 48 | 47 | ad3antlr 493 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((inl‘𝑛) = (inl‘𝑚) ↔ 𝑛 = 𝑚)) | 
| 49 | 46, 48 | mpbid 147 | 
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑛 = 𝑚) | 
| 50 | 49 | a1d 22 | 
. . . . 5
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) | 
| 51 | 40 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑚 ∈ ω) | 
| 52 |   | djune 7144 | 
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ω ∧ ∅
∈ 1o) → (inl‘𝑚) ≠ (inr‘∅)) | 
| 53 | 52 | necomd 2453 | 
. . . . . . . . . 10
⊢ ((𝑚 ∈ ω ∧ ∅
∈ 1o) → (inr‘∅) ≠ (inl‘𝑚)) | 
| 54 | 51, 4, 53 | sylancl 413 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ≠
(inl‘𝑚)) | 
| 55 | 54 | neneqd 2388 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (inr‘∅) =
(inl‘𝑚)) | 
| 56 | 1 | ad3antrrr 492 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔
1o)–1-1→𝐴) | 
| 57 | 4, 5 | mp1i 10 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ∈ (ω
⊔ 1o)) | 
| 58 | 40, 42 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (inl‘𝑚) ∈ (ω ⊔
1o)) | 
| 59 | 58 | ad2antrr 488 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔
1o)) | 
| 60 |   | f1veqaeq 5816 | 
. . . . . . . . 9
⊢ ((𝐹:(ω ⊔
1o)–1-1→𝐴 ∧ ((inr‘∅)
∈ (ω ⊔ 1o) ∧ (inl‘𝑚) ∈ (ω ⊔ 1o)))
→ ((𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)) → (inr‘∅) =
(inl‘𝑚))) | 
| 61 | 56, 57, 59, 60 | syl12anc 1247 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)) → (inr‘∅) =
(inl‘𝑚))) | 
| 62 | 55, 61 | mtod 664 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚))) | 
| 63 |   | simplr 528 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = 𝐵) | 
| 64 | 63 | iftrued 3568 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inr‘∅))) | 
| 65 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑚)) = 𝐵) | 
| 66 | 65 | iffalsed 3571 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inl‘𝑚))) | 
| 67 | 64, 66 | eqeq12d 2211 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)))) | 
| 68 | 62, 67 | mtbird 674 | 
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚)))) | 
| 69 | 68 | pm2.21d 620 | 
. . . . 5
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) | 
| 70 | 23 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| 71 | 3 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝐹:(ω ⊔
1o)⟶𝐴) | 
| 72 | 71, 58 | ffvelcdmd 5698 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (𝐹‘(inl‘𝑚)) ∈ 𝐴) | 
| 73 | 25 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝐵 ∈ 𝐴) | 
| 74 |   | eqeq12 2209 | 
. . . . . . . . . . 11
⊢ ((𝑥 = (𝐹‘(inl‘𝑚)) ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ (𝐹‘(inl‘𝑚)) = 𝐵)) | 
| 75 | 74 | dcbid 839 | 
. . . . . . . . . 10
⊢ ((𝑥 = (𝐹‘(inl‘𝑚)) ∧ 𝑦 = 𝐵) → (DECID 𝑥 = 𝑦 ↔ DECID (𝐹‘(inl‘𝑚)) = 𝐵)) | 
| 76 | 75 | rspc2gv 2880 | 
. . . . . . . . 9
⊢ (((𝐹‘(inl‘𝑚)) ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → DECID (𝐹‘(inl‘𝑚)) = 𝐵)) | 
| 77 | 72, 73, 76 | syl2anc 411 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → DECID (𝐹‘(inl‘𝑚)) = 𝐵)) | 
| 78 | 70, 77 | mpd 13 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → DECID
(𝐹‘(inl‘𝑚)) = 𝐵) | 
| 79 |   | exmiddc 837 | 
. . . . . . 7
⊢
(DECID (𝐹‘(inl‘𝑚)) = 𝐵 → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵)) | 
| 80 | 78, 79 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵)) | 
| 81 | 80 | adantr 276 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵)) | 
| 82 | 50, 69, 81 | mpjaodan 799 | 
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) | 
| 83 |   | simprl 529 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝑛 ∈ ω) | 
| 84 | 83 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑛 ∈ ω) | 
| 85 |   | djune 7144 | 
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ ∅
∈ 1o) → (inl‘𝑛) ≠ (inr‘∅)) | 
| 86 | 84, 4, 85 | sylancl 413 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ≠ (inr‘∅)) | 
| 87 | 86 | neneqd 2388 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (inl‘𝑛) = (inr‘∅)) | 
| 88 | 1 | ad3antrrr 492 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔
1o)–1-1→𝐴) | 
| 89 | 38 | ad2antrr 488 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔
1o)) | 
| 90 | 4, 5 | mp1i 10 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ∈ (ω
⊔ 1o)) | 
| 91 |   | f1veqaeq 5816 | 
. . . . . . . . 9
⊢ ((𝐹:(ω ⊔
1o)–1-1→𝐴 ∧ ((inl‘𝑛) ∈ (ω ⊔
1o) ∧ (inr‘∅) ∈ (ω ⊔
1o))) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)) →
(inl‘𝑛) =
(inr‘∅))) | 
| 92 | 88, 89, 90, 91 | syl12anc 1247 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)) →
(inl‘𝑛) =
(inr‘∅))) | 
| 93 | 87, 92 | mtod 664 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅))) | 
| 94 |   | simplr 528 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = 𝐵) | 
| 95 | 94 | iffalsed 3571 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inl‘𝑛))) | 
| 96 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑚)) = 𝐵) | 
| 97 | 96 | iftrued 3568 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inr‘∅))) | 
| 98 | 95, 97 | eqeq12d 2211 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)))) | 
| 99 | 93, 98 | mtbird 674 | 
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚)))) | 
| 100 | 99 | pm2.21d 620 | 
. . . . 5
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) | 
| 101 |   | simplr 528 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = 𝐵) | 
| 102 | 101 | iffalsed 3571 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inl‘𝑛))) | 
| 103 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑚)) = 𝐵) | 
| 104 | 103 | iffalsed 3571 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inl‘𝑚))) | 
| 105 | 102, 104 | eqeq12d 2211 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)))) | 
| 106 | 1 | ad3antrrr 492 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔
1o)–1-1→𝐴) | 
| 107 | 38 | ad2antrr 488 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔
1o)) | 
| 108 | 58 | ad2antrr 488 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔
1o)) | 
| 109 | 106, 107,
108, 44 | syl12anc 1247 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚))) | 
| 110 | 105, 109 | sylbid 150 | 
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → (inl‘𝑛) = (inl‘𝑚))) | 
| 111 | 47 | ad3antlr 493 | 
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((inl‘𝑛) = (inl‘𝑚) ↔ 𝑛 = 𝑚)) | 
| 112 | 110, 111 | sylibd 149 | 
. . . . 5
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) | 
| 113 | 80 | adantr 276 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵)) | 
| 114 | 100, 112,
113 | mpjaodan 799 | 
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) | 
| 115 |   | exmiddc 837 | 
. . . . . 6
⊢
(DECID (𝐹‘(inl‘𝑛)) = 𝐵 → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵)) | 
| 116 | 31, 115 | syl 14 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵)) | 
| 117 | 116 | adantrr 479 | 
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵)) | 
| 118 | 82, 114, 117 | mpjaodan 799 | 
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) | 
| 119 | 118 | ralrimivva 2579 | 
. 2
⊢ (𝜑 → ∀𝑛 ∈ ω ∀𝑚 ∈ ω (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)) | 
| 120 |   | difinfsnlem.g | 
. . 3
⊢ 𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛)))) | 
| 121 |   | 2fveq3 5563 | 
. . . . 5
⊢ (𝑛 = 𝑚 → (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚))) | 
| 122 | 121 | eqeq1d 2205 | 
. . . 4
⊢ (𝑛 = 𝑚 → ((𝐹‘(inl‘𝑛)) = 𝐵 ↔ (𝐹‘(inl‘𝑚)) = 𝐵)) | 
| 123 | 122, 121 | ifbieq2d 3585 | 
. . 3
⊢ (𝑛 = 𝑚 → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚)))) | 
| 124 | 120, 123 | f1mpt 5818 | 
. 2
⊢ (𝐺:ω–1-1→(𝐴 ∖ {𝐵}) ↔ (∀𝑛 ∈ ω if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵}) ∧ ∀𝑛 ∈ ω ∀𝑚 ∈ ω (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))) | 
| 125 | 33, 119, 124 | sylanbrc 417 | 
1
⊢ (𝜑 → 𝐺:ω–1-1→(𝐴 ∖ {𝐵})) |