ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsnlem GIF version

Theorem difinfsnlem 7076
Description: Lemma for difinfsn 7077. The case where we need to swap 𝐵 and (inr‘∅) in building the mapping 𝐺. (Contributed by Jim Kingdon, 9-Aug-2023.)
Hypotheses
Ref Expression
difinfsnlem.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
difinfsnlem.b (𝜑𝐵𝐴)
difinfsnlem.f (𝜑𝐹:(ω ⊔ 1o)–1-1𝐴)
difinfsnlem.fb (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵)
difinfsnlem.g 𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))))
Assertion
Ref Expression
difinfsnlem (𝜑𝐺:ω–1-1→(𝐴 ∖ {𝐵}))
Distinct variable groups:   𝐴,𝑛,𝑥,𝑦   𝐵,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)

Proof of Theorem difinfsnlem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 difinfsnlem.f . . . . . . . 8 (𝜑𝐹:(ω ⊔ 1o)–1-1𝐴)
2 f1f 5403 . . . . . . . 8 (𝐹:(ω ⊔ 1o)–1-1𝐴𝐹:(ω ⊔ 1o)⟶𝐴)
31, 2syl 14 . . . . . . 7 (𝜑𝐹:(ω ⊔ 1o)⟶𝐴)
4 0lt1o 6419 . . . . . . . 8 ∅ ∈ 1o
5 djurcl 7029 . . . . . . . 8 (∅ ∈ 1o → (inr‘∅) ∈ (ω ⊔ 1o))
64, 5mp1i 10 . . . . . . 7 (𝜑 → (inr‘∅) ∈ (ω ⊔ 1o))
73, 6ffvelrnd 5632 . . . . . 6 (𝜑 → (𝐹‘(inr‘∅)) ∈ 𝐴)
8 difinfsnlem.fb . . . . . . 7 (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵)
9 elsni 3601 . . . . . . . 8 ((𝐹‘(inr‘∅)) ∈ {𝐵} → (𝐹‘(inr‘∅)) = 𝐵)
109necon3ai 2389 . . . . . . 7 ((𝐹‘(inr‘∅)) ≠ 𝐵 → ¬ (𝐹‘(inr‘∅)) ∈ {𝐵})
118, 10syl 14 . . . . . 6 (𝜑 → ¬ (𝐹‘(inr‘∅)) ∈ {𝐵})
127, 11eldifd 3131 . . . . 5 (𝜑 → (𝐹‘(inr‘∅)) ∈ (𝐴 ∖ {𝐵}))
1312ad2antrr 485 . . . 4 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inr‘∅)) ∈ (𝐴 ∖ {𝐵}))
143adantr 274 . . . . . . 7 ((𝜑𝑛 ∈ ω) → 𝐹:(ω ⊔ 1o)⟶𝐴)
15 djulcl 7028 . . . . . . . 8 (𝑛 ∈ ω → (inl‘𝑛) ∈ (ω ⊔ 1o))
1615adantl 275 . . . . . . 7 ((𝜑𝑛 ∈ ω) → (inl‘𝑛) ∈ (ω ⊔ 1o))
1714, 16ffvelrnd 5632 . . . . . 6 ((𝜑𝑛 ∈ ω) → (𝐹‘(inl‘𝑛)) ∈ 𝐴)
1817adantr 274 . . . . 5 (((𝜑𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inl‘𝑛)) ∈ 𝐴)
19 elsni 3601 . . . . . . 7 ((𝐹‘(inl‘𝑛)) ∈ {𝐵} → (𝐹‘(inl‘𝑛)) = 𝐵)
2019con3i 627 . . . . . 6 (¬ (𝐹‘(inl‘𝑛)) = 𝐵 → ¬ (𝐹‘(inl‘𝑛)) ∈ {𝐵})
2120adantl 275 . . . . 5 (((𝜑𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) ∈ {𝐵})
2218, 21eldifd 3131 . . . 4 (((𝜑𝑛 ∈ ω) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (𝐹‘(inl‘𝑛)) ∈ (𝐴 ∖ {𝐵}))
23 difinfsnlem.dc . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2423adantr 274 . . . . 5 ((𝜑𝑛 ∈ ω) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
25 difinfsnlem.b . . . . . . 7 (𝜑𝐵𝐴)
2625adantr 274 . . . . . 6 ((𝜑𝑛 ∈ ω) → 𝐵𝐴)
27 eqeq12 2183 . . . . . . . 8 ((𝑥 = (𝐹‘(inl‘𝑛)) ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ (𝐹‘(inl‘𝑛)) = 𝐵))
2827dcbid 833 . . . . . . 7 ((𝑥 = (𝐹‘(inl‘𝑛)) ∧ 𝑦 = 𝐵) → (DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑛)) = 𝐵))
2928rspc2gv 2846 . . . . . 6 (((𝐹‘(inl‘𝑛)) ∈ 𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑛)) = 𝐵))
3017, 26, 29syl2anc 409 . . . . 5 ((𝜑𝑛 ∈ ω) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑛)) = 𝐵))
3124, 30mpd 13 . . . 4 ((𝜑𝑛 ∈ ω) → DECID (𝐹‘(inl‘𝑛)) = 𝐵)
3213, 22, 31ifcldadc 3555 . . 3 ((𝜑𝑛 ∈ ω) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵}))
3332ralrimiva 2543 . 2 (𝜑 → ∀𝑛 ∈ ω if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵}))
34 simplr 525 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = 𝐵)
35 simpr 109 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑚)) = 𝐵)
3634, 35eqtr4d 2206 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)))
371ad3antrrr 489 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔ 1o)–1-1𝐴)
3815ad2antrl 487 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (inl‘𝑛) ∈ (ω ⊔ 1o))
3938ad2antrr 485 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔ 1o))
40 simprr 527 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝑚 ∈ ω)
4140ad2antrr 485 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑚 ∈ ω)
42 djulcl 7028 . . . . . . . . . 10 (𝑚 ∈ ω → (inl‘𝑚) ∈ (ω ⊔ 1o))
4341, 42syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔ 1o))
44 f1veqaeq 5748 . . . . . . . . 9 ((𝐹:(ω ⊔ 1o)–1-1𝐴 ∧ ((inl‘𝑛) ∈ (ω ⊔ 1o) ∧ (inl‘𝑚) ∈ (ω ⊔ 1o))) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚)))
4537, 39, 43, 44syl12anc 1231 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚)))
4636, 45mpd 13 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) = (inl‘𝑚))
47 inl11 7042 . . . . . . . 8 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((inl‘𝑛) = (inl‘𝑚) ↔ 𝑛 = 𝑚))
4847ad3antlr 490 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((inl‘𝑛) = (inl‘𝑚) ↔ 𝑛 = 𝑚))
4946, 48mpbid 146 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑛 = 𝑚)
5049a1d 22 . . . . 5 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
5140ad2antrr 485 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑚 ∈ ω)
52 djune 7055 . . . . . . . . . . 11 ((𝑚 ∈ ω ∧ ∅ ∈ 1o) → (inl‘𝑚) ≠ (inr‘∅))
5352necomd 2426 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ ∅ ∈ 1o) → (inr‘∅) ≠ (inl‘𝑚))
5451, 4, 53sylancl 411 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ≠ (inl‘𝑚))
5554neneqd 2361 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (inr‘∅) = (inl‘𝑚))
561ad3antrrr 489 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔ 1o)–1-1𝐴)
574, 5mp1i 10 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ∈ (ω ⊔ 1o))
5840, 42syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (inl‘𝑚) ∈ (ω ⊔ 1o))
5958ad2antrr 485 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔ 1o))
60 f1veqaeq 5748 . . . . . . . . 9 ((𝐹:(ω ⊔ 1o)–1-1𝐴 ∧ ((inr‘∅) ∈ (ω ⊔ 1o) ∧ (inl‘𝑚) ∈ (ω ⊔ 1o))) → ((𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)) → (inr‘∅) = (inl‘𝑚)))
6156, 57, 59, 60syl12anc 1231 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)) → (inr‘∅) = (inl‘𝑚)))
6255, 61mtod 658 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚)))
63 simplr 525 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑛)) = 𝐵)
6463iftrued 3533 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inr‘∅)))
65 simpr 109 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑚)) = 𝐵)
6665iffalsed 3536 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inl‘𝑚)))
6764, 66eqeq12d 2185 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inr‘∅)) = (𝐹‘(inl‘𝑚))))
6862, 67mtbird 668 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))))
6968pm2.21d 614 . . . . 5 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
7023adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
713adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝐹:(ω ⊔ 1o)⟶𝐴)
7271, 58ffvelrnd 5632 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (𝐹‘(inl‘𝑚)) ∈ 𝐴)
7325adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝐵𝐴)
74 eqeq12 2183 . . . . . . . . . . 11 ((𝑥 = (𝐹‘(inl‘𝑚)) ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ (𝐹‘(inl‘𝑚)) = 𝐵))
7574dcbid 833 . . . . . . . . . 10 ((𝑥 = (𝐹‘(inl‘𝑚)) ∧ 𝑦 = 𝐵) → (DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑚)) = 𝐵))
7675rspc2gv 2846 . . . . . . . . 9 (((𝐹‘(inl‘𝑚)) ∈ 𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑚)) = 𝐵))
7772, 73, 76syl2anc 409 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID (𝐹‘(inl‘𝑚)) = 𝐵))
7870, 77mpd 13 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → DECID (𝐹‘(inl‘𝑚)) = 𝐵)
79 exmiddc 831 . . . . . . 7 (DECID (𝐹‘(inl‘𝑚)) = 𝐵 → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵))
8078, 79syl 14 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵))
8180adantr 274 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵))
8250, 69, 81mpjaodan 793 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ (𝐹‘(inl‘𝑛)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
83 simprl 526 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → 𝑛 ∈ ω)
8483ad2antrr 485 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝑛 ∈ ω)
85 djune 7055 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ ∅ ∈ 1o) → (inl‘𝑛) ≠ (inr‘∅))
8684, 4, 85sylancl 411 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ≠ (inr‘∅))
8786neneqd 2361 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (inl‘𝑛) = (inr‘∅))
881ad3antrrr 489 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔ 1o)–1-1𝐴)
8938ad2antrr 485 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔ 1o))
904, 5mp1i 10 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (inr‘∅) ∈ (ω ⊔ 1o))
91 f1veqaeq 5748 . . . . . . . . 9 ((𝐹:(ω ⊔ 1o)–1-1𝐴 ∧ ((inl‘𝑛) ∈ (ω ⊔ 1o) ∧ (inr‘∅) ∈ (ω ⊔ 1o))) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)) → (inl‘𝑛) = (inr‘∅)))
9288, 89, 90, 91syl12anc 1231 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)) → (inl‘𝑛) = (inr‘∅)))
9387, 92mtod 658 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅)))
94 simplr 525 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = 𝐵)
9594iffalsed 3536 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inl‘𝑛)))
96 simpr 109 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (𝐹‘(inl‘𝑚)) = 𝐵)
9796iftrued 3533 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inr‘∅)))
9895, 97eqeq12d 2185 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inl‘𝑛)) = (𝐹‘(inr‘∅))))
9993, 98mtbird 668 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))))
10099pm2.21d 614 . . . . 5 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
101 simplr 525 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑛)) = 𝐵)
102101iffalsed 3536 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = (𝐹‘(inl‘𝑛)))
103 simpr 109 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ¬ (𝐹‘(inl‘𝑚)) = 𝐵)
104103iffalsed 3536 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) = (𝐹‘(inl‘𝑚)))
105102, 104eqeq12d 2185 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) ↔ (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚))))
1061ad3antrrr 489 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → 𝐹:(ω ⊔ 1o)–1-1𝐴)
10738ad2antrr 485 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑛) ∈ (ω ⊔ 1o))
10858ad2antrr 485 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (inl‘𝑚) ∈ (ω ⊔ 1o))
109106, 107, 108, 44syl12anc 1231 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)) → (inl‘𝑛) = (inl‘𝑚)))
110105, 109sylbid 149 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → (inl‘𝑛) = (inl‘𝑚)))
11147ad3antlr 490 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → ((inl‘𝑛) = (inl‘𝑚) ↔ 𝑛 = 𝑚))
112110, 111sylibd 148 . . . . 5 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) ∧ ¬ (𝐹‘(inl‘𝑚)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
11380adantr 274 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → ((𝐹‘(inl‘𝑚)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑚)) = 𝐵))
114100, 112, 113mpjaodan 793 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) ∧ ¬ (𝐹‘(inl‘𝑛)) = 𝐵) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
115 exmiddc 831 . . . . . 6 (DECID (𝐹‘(inl‘𝑛)) = 𝐵 → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵))
11631, 115syl 14 . . . . 5 ((𝜑𝑛 ∈ ω) → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵))
117116adantrr 476 . . . 4 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → ((𝐹‘(inl‘𝑛)) = 𝐵 ∨ ¬ (𝐹‘(inl‘𝑛)) = 𝐵))
11882, 114, 117mpjaodan 793 . . 3 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑚 ∈ ω)) → (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
119118ralrimivva 2552 . 2 (𝜑 → ∀𝑛 ∈ ω ∀𝑚 ∈ ω (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚))
120 difinfsnlem.g . . 3 𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))))
121 2fveq3 5501 . . . . 5 (𝑛 = 𝑚 → (𝐹‘(inl‘𝑛)) = (𝐹‘(inl‘𝑚)))
122121eqeq1d 2179 . . . 4 (𝑛 = 𝑚 → ((𝐹‘(inl‘𝑛)) = 𝐵 ↔ (𝐹‘(inl‘𝑚)) = 𝐵))
123122, 121ifbieq2d 3550 . . 3 (𝑛 = 𝑚 → if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))))
124120, 123f1mpt 5750 . 2 (𝐺:ω–1-1→(𝐴 ∖ {𝐵}) ↔ (∀𝑛 ∈ ω if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) ∈ (𝐴 ∖ {𝐵}) ∧ ∀𝑛 ∈ ω ∀𝑚 ∈ ω (if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))) = if((𝐹‘(inl‘𝑚)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑚))) → 𝑛 = 𝑚)))
12533, 119, 124sylanbrc 415 1 (𝜑𝐺:ω–1-1→(𝐴 ∖ {𝐵}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wne 2340  wral 2448  cdif 3118  c0 3414  ifcif 3526  {csn 3583  cmpt 4050  ωcom 4574  wf 5194  1-1wf1 5195  cfv 5198  1oc1o 6388  cdju 7014  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fv 5206  df-1st 6119  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  difinfsn  7077
  Copyright terms: Public domain W3C validator