ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn1 GIF version

Theorem bcn1 10511
Description: Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn1 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)

Proof of Theorem bcn1
StepHypRef Expression
1 elnn0 8986 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 1eluzge0 9376 . . . . . . 7 1 ∈ (ℤ‘0)
32a1i 9 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ (ℤ‘0))
4 elnnuz 9369 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
54biimpi 119 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
6 elfzuzb 9807 . . . . . 6 (1 ∈ (0...𝑁) ↔ (1 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ‘1)))
73, 5, 6sylanbrc 413 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ (0...𝑁))
8 bcval2 10503 . . . . 5 (1 ∈ (0...𝑁) → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))))
97, 8syl 14 . . . 4 (𝑁 ∈ ℕ → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))))
10 facnn2 10487 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
11 fac1 10482 . . . . . . 7 (!‘1) = 1
1211oveq2i 5785 . . . . . 6 ((!‘(𝑁 − 1)) · (!‘1)) = ((!‘(𝑁 − 1)) · 1)
13 nnm1nn0 9025 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1413faccld 10489 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ)
1514nncnd 8741 . . . . . . 7 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℂ)
1615mulid1d 7790 . . . . . 6 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · 1) = (!‘(𝑁 − 1)))
1712, 16syl5eq 2184 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘1)) = (!‘(𝑁 − 1)))
1810, 17oveq12d 5792 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))) = (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))))
19 nncn 8735 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2014nnap0d 8773 . . . . 5 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) # 0)
2119, 15, 20divcanap3d 8562 . . . 4 (𝑁 ∈ ℕ → (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))) = 𝑁)
229, 18, 213eqtrd 2176 . . 3 (𝑁 ∈ ℕ → (𝑁C1) = 𝑁)
23 0nn0 8999 . . . . 5 0 ∈ ℕ0
24 1z 9087 . . . . 5 1 ∈ ℤ
25 0lt1 7896 . . . . . 6 0 < 1
2625olci 721 . . . . 5 (1 < 0 ∨ 0 < 1)
27 bcval4 10505 . . . . 5 ((0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ (1 < 0 ∨ 0 < 1)) → (0C1) = 0)
2823, 24, 26, 27mp3an 1315 . . . 4 (0C1) = 0
29 oveq1 5781 . . . . 5 (𝑁 = 0 → (𝑁C1) = (0C1))
30 eqeq12 2152 . . . . 5 (((𝑁C1) = (0C1) ∧ 𝑁 = 0) → ((𝑁C1) = 𝑁 ↔ (0C1) = 0))
3129, 30mpancom 418 . . . 4 (𝑁 = 0 → ((𝑁C1) = 𝑁 ↔ (0C1) = 0))
3228, 31mpbiri 167 . . 3 (𝑁 = 0 → (𝑁C1) = 𝑁)
3322, 32jaoi 705 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁C1) = 𝑁)
341, 33sylbi 120 1 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 697   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  0cc0 7627  1c1 7628   · cmul 7632   < clt 7807  cmin 7940   / cdiv 8439  cn 8727  0cn0 8984  cz 9061  cuz 9333  ...cfz 9797  !cfa 10478  Ccbc 10500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-fz 9798  df-seqfrec 10226  df-fac 10479  df-bc 10501
This theorem is referenced by:  bcnp1n  10512  bcn2m1  10522  bcn2p1  10523  bcnm1  10525
  Copyright terms: Public domain W3C validator