ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn1 GIF version

Theorem bcn1 10227
Description: Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn1 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)

Proof of Theorem bcn1
StepHypRef Expression
1 elnn0 8736 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 1eluzge0 9123 . . . . . . 7 1 ∈ (ℤ‘0)
32a1i 9 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ (ℤ‘0))
4 elnnuz 9116 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
54biimpi 119 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
6 elfzuzb 9495 . . . . . 6 (1 ∈ (0...𝑁) ↔ (1 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ‘1)))
73, 5, 6sylanbrc 409 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ (0...𝑁))
8 bcval2 10219 . . . . 5 (1 ∈ (0...𝑁) → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))))
97, 8syl 14 . . . 4 (𝑁 ∈ ℕ → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))))
10 facnn2 10203 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
11 fac1 10198 . . . . . . 7 (!‘1) = 1
1211oveq2i 5677 . . . . . 6 ((!‘(𝑁 − 1)) · (!‘1)) = ((!‘(𝑁 − 1)) · 1)
13 nnm1nn0 8775 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1413faccld 10205 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ)
1514nncnd 8497 . . . . . . 7 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℂ)
1615mulid1d 7566 . . . . . 6 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · 1) = (!‘(𝑁 − 1)))
1712, 16syl5eq 2133 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘1)) = (!‘(𝑁 − 1)))
1810, 17oveq12d 5684 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))) = (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))))
19 nncn 8491 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2014nnap0d 8529 . . . . 5 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) # 0)
2119, 15, 20divcanap3d 8323 . . . 4 (𝑁 ∈ ℕ → (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))) = 𝑁)
229, 18, 213eqtrd 2125 . . 3 (𝑁 ∈ ℕ → (𝑁C1) = 𝑁)
23 0nn0 8749 . . . . 5 0 ∈ ℕ0
24 1z 8837 . . . . 5 1 ∈ ℤ
25 0lt1 7671 . . . . . 6 0 < 1
2625olci 687 . . . . 5 (1 < 0 ∨ 0 < 1)
27 bcval4 10221 . . . . 5 ((0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ (1 < 0 ∨ 0 < 1)) → (0C1) = 0)
2823, 24, 26, 27mp3an 1274 . . . 4 (0C1) = 0
29 oveq1 5673 . . . . 5 (𝑁 = 0 → (𝑁C1) = (0C1))
30 eqeq12 2101 . . . . 5 (((𝑁C1) = (0C1) ∧ 𝑁 = 0) → ((𝑁C1) = 𝑁 ↔ (0C1) = 0))
3129, 30mpancom 414 . . . 4 (𝑁 = 0 → ((𝑁C1) = 𝑁 ↔ (0C1) = 0))
3228, 31mpbiri 167 . . 3 (𝑁 = 0 → (𝑁C1) = 𝑁)
3322, 32jaoi 672 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁C1) = 𝑁)
341, 33sylbi 120 1 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 665   = wceq 1290  wcel 1439   class class class wbr 3851  cfv 5028  (class class class)co 5666  0cc0 7411  1c1 7412   · cmul 7416   < clt 7583  cmin 7714   / cdiv 8200  cn 8483  0cn0 8734  cz 8811  cuz 9080  ...cfz 9485  !cfa 10194  Ccbc 10216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-fz 9486  df-iseq 9914  df-fac 10195  df-bc 10217
This theorem is referenced by:  bcnp1n  10228  bcn2m1  10238  bcn2p1  10239  bcnm1  10241
  Copyright terms: Public domain W3C validator