ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn1 GIF version

Theorem bcn1 10903
Description: Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn1 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)

Proof of Theorem bcn1
StepHypRef Expression
1 elnn0 9297 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 1eluzge0 9695 . . . . . . 7 1 ∈ (ℤ‘0)
32a1i 9 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ (ℤ‘0))
4 elnnuz 9685 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
54biimpi 120 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
6 elfzuzb 10141 . . . . . 6 (1 ∈ (0...𝑁) ↔ (1 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ‘1)))
73, 5, 6sylanbrc 417 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ (0...𝑁))
8 bcval2 10895 . . . . 5 (1 ∈ (0...𝑁) → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))))
97, 8syl 14 . . . 4 (𝑁 ∈ ℕ → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))))
10 facnn2 10879 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
11 fac1 10874 . . . . . . 7 (!‘1) = 1
1211oveq2i 5955 . . . . . 6 ((!‘(𝑁 − 1)) · (!‘1)) = ((!‘(𝑁 − 1)) · 1)
13 nnm1nn0 9336 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1413faccld 10881 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ)
1514nncnd 9050 . . . . . . 7 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℂ)
1615mulridd 8089 . . . . . 6 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · 1) = (!‘(𝑁 − 1)))
1712, 16eqtrid 2250 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘1)) = (!‘(𝑁 − 1)))
1810, 17oveq12d 5962 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))) = (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))))
19 nncn 9044 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2014nnap0d 9082 . . . . 5 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) # 0)
2119, 15, 20divcanap3d 8868 . . . 4 (𝑁 ∈ ℕ → (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))) = 𝑁)
229, 18, 213eqtrd 2242 . . 3 (𝑁 ∈ ℕ → (𝑁C1) = 𝑁)
23 0nn0 9310 . . . . 5 0 ∈ ℕ0
24 1z 9398 . . . . 5 1 ∈ ℤ
25 0lt1 8199 . . . . . 6 0 < 1
2625olci 734 . . . . 5 (1 < 0 ∨ 0 < 1)
27 bcval4 10897 . . . . 5 ((0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ (1 < 0 ∨ 0 < 1)) → (0C1) = 0)
2823, 24, 26, 27mp3an 1350 . . . 4 (0C1) = 0
29 oveq1 5951 . . . . 5 (𝑁 = 0 → (𝑁C1) = (0C1))
30 eqeq12 2218 . . . . 5 (((𝑁C1) = (0C1) ∧ 𝑁 = 0) → ((𝑁C1) = 𝑁 ↔ (0C1) = 0))
3129, 30mpancom 422 . . . 4 (𝑁 = 0 → ((𝑁C1) = 𝑁 ↔ (0C1) = 0))
3228, 31mpbiri 168 . . 3 (𝑁 = 0 → (𝑁C1) = 𝑁)
3322, 32jaoi 718 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁C1) = 𝑁)
341, 33sylbi 121 1 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 710   = wceq 1373  wcel 2176   class class class wbr 4044  cfv 5271  (class class class)co 5944  0cc0 7925  1c1 7926   · cmul 7930   < clt 8107  cmin 8243   / cdiv 8745  cn 9036  0cn0 9295  cz 9372  cuz 9648  ...cfz 10130  !cfa 10870  Ccbc 10892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-fz 10131  df-seqfrec 10593  df-fac 10871  df-bc 10893
This theorem is referenced by:  bcnp1n  10904  bcn2m1  10914  bcn2p1  10915  bcnm1  10917
  Copyright terms: Public domain W3C validator