![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bcn1 | GIF version |
Description: Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
Ref | Expression |
---|---|
bcn1 | ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 8736 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | 1eluzge0 9123 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘0) | |
3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ (ℤ≥‘0)) |
4 | elnnuz 9116 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
5 | 4 | biimpi 119 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
6 | elfzuzb 9495 | . . . . . 6 ⊢ (1 ∈ (0...𝑁) ↔ (1 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘1))) | |
7 | 3, 5, 6 | sylanbrc 409 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ (0...𝑁)) |
8 | bcval2 10219 | . . . . 5 ⊢ (1 ∈ (0...𝑁) → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1)))) | |
9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1)))) |
10 | facnn2 10203 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁)) | |
11 | fac1 10198 | . . . . . . 7 ⊢ (!‘1) = 1 | |
12 | 11 | oveq2i 5677 | . . . . . 6 ⊢ ((!‘(𝑁 − 1)) · (!‘1)) = ((!‘(𝑁 − 1)) · 1) |
13 | nnm1nn0 8775 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
14 | 13 | faccld 10205 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ) |
15 | 14 | nncnd 8497 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℂ) |
16 | 15 | mulid1d 7566 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · 1) = (!‘(𝑁 − 1))) |
17 | 12, 16 | syl5eq 2133 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘1)) = (!‘(𝑁 − 1))) |
18 | 10, 17 | oveq12d 5684 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))) = (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1)))) |
19 | nncn 8491 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
20 | 14 | nnap0d 8529 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) # 0) |
21 | 19, 15, 20 | divcanap3d 8323 | . . . 4 ⊢ (𝑁 ∈ ℕ → (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))) = 𝑁) |
22 | 9, 18, 21 | 3eqtrd 2125 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁C1) = 𝑁) |
23 | 0nn0 8749 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
24 | 1z 8837 | . . . . 5 ⊢ 1 ∈ ℤ | |
25 | 0lt1 7671 | . . . . . 6 ⊢ 0 < 1 | |
26 | 25 | olci 687 | . . . . 5 ⊢ (1 < 0 ∨ 0 < 1) |
27 | bcval4 10221 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ (1 < 0 ∨ 0 < 1)) → (0C1) = 0) | |
28 | 23, 24, 26, 27 | mp3an 1274 | . . . 4 ⊢ (0C1) = 0 |
29 | oveq1 5673 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁C1) = (0C1)) | |
30 | eqeq12 2101 | . . . . 5 ⊢ (((𝑁C1) = (0C1) ∧ 𝑁 = 0) → ((𝑁C1) = 𝑁 ↔ (0C1) = 0)) | |
31 | 29, 30 | mpancom 414 | . . . 4 ⊢ (𝑁 = 0 → ((𝑁C1) = 𝑁 ↔ (0C1) = 0)) |
32 | 28, 31 | mpbiri 167 | . . 3 ⊢ (𝑁 = 0 → (𝑁C1) = 𝑁) |
33 | 22, 32 | jaoi 672 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁C1) = 𝑁) |
34 | 1, 33 | sylbi 120 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 665 = wceq 1290 ∈ wcel 1439 class class class wbr 3851 ‘cfv 5028 (class class class)co 5666 0cc0 7411 1c1 7412 · cmul 7416 < clt 7583 − cmin 7714 / cdiv 8200 ℕcn 8483 ℕ0cn0 8734 ℤcz 8811 ℤ≥cuz 9080 ...cfz 9485 !cfa 10194 Ccbc 10216 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-mulrcl 7505 ax-addcom 7506 ax-mulcom 7507 ax-addass 7508 ax-mulass 7509 ax-distr 7510 ax-i2m1 7511 ax-0lt1 7512 ax-1rid 7513 ax-0id 7514 ax-rnegex 7515 ax-precex 7516 ax-cnre 7517 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-apti 7521 ax-pre-ltadd 7522 ax-pre-mulgt0 7523 ax-pre-mulext 7524 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-if 3398 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-po 4132 df-iso 4133 df-iord 4202 df-on 4204 df-ilim 4205 df-suc 4207 df-iom 4419 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-frec 6170 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-sub 7716 df-neg 7717 df-reap 8113 df-ap 8120 df-div 8201 df-inn 8484 df-n0 8735 df-z 8812 df-uz 9081 df-q 9166 df-fz 9486 df-iseq 9914 df-fac 10195 df-bc 10217 |
This theorem is referenced by: bcnp1n 10228 bcn2m1 10238 bcn2p1 10239 bcnm1 10241 |
Copyright terms: Public domain | W3C validator |