ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn1 GIF version

Theorem bcn1 10066
Description: Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn1 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)

Proof of Theorem bcn1
StepHypRef Expression
1 elnn0 8611 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 1eluzge0 8997 . . . . . . 7 1 ∈ (ℤ‘0)
32a1i 9 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ (ℤ‘0))
4 elnnuz 8990 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
54biimpi 118 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
6 elfzuzb 9369 . . . . . 6 (1 ∈ (0...𝑁) ↔ (1 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ‘1)))
73, 5, 6sylanbrc 408 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ (0...𝑁))
8 bcval2 10058 . . . . 5 (1 ∈ (0...𝑁) → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))))
97, 8syl 14 . . . 4 (𝑁 ∈ ℕ → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))))
10 facnn2 10042 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
11 fac1 10037 . . . . . . 7 (!‘1) = 1
1211oveq2i 5626 . . . . . 6 ((!‘(𝑁 − 1)) · (!‘1)) = ((!‘(𝑁 − 1)) · 1)
13 nnm1nn0 8650 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1413faccld 10044 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ)
1514nncnd 8374 . . . . . . 7 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℂ)
1615mulid1d 7452 . . . . . 6 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · 1) = (!‘(𝑁 − 1)))
1712, 16syl5eq 2129 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘1)) = (!‘(𝑁 − 1)))
1810, 17oveq12d 5633 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))) = (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))))
19 nncn 8368 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2014nnap0d 8405 . . . . 5 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) # 0)
2119, 15, 20divcanap3d 8203 . . . 4 (𝑁 ∈ ℕ → (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))) = 𝑁)
229, 18, 213eqtrd 2121 . . 3 (𝑁 ∈ ℕ → (𝑁C1) = 𝑁)
23 0nn0 8624 . . . . 5 0 ∈ ℕ0
24 1z 8712 . . . . 5 1 ∈ ℤ
25 0lt1 7557 . . . . . 6 0 < 1
2625olci 684 . . . . 5 (1 < 0 ∨ 0 < 1)
27 bcval4 10060 . . . . 5 ((0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ (1 < 0 ∨ 0 < 1)) → (0C1) = 0)
2823, 24, 26, 27mp3an 1271 . . . 4 (0C1) = 0
29 oveq1 5622 . . . . 5 (𝑁 = 0 → (𝑁C1) = (0C1))
30 eqeq12 2097 . . . . 5 (((𝑁C1) = (0C1) ∧ 𝑁 = 0) → ((𝑁C1) = 𝑁 ↔ (0C1) = 0))
3129, 30mpancom 413 . . . 4 (𝑁 = 0 → ((𝑁C1) = 𝑁 ↔ (0C1) = 0))
3228, 31mpbiri 166 . . 3 (𝑁 = 0 → (𝑁C1) = 𝑁)
3322, 32jaoi 669 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁C1) = 𝑁)
341, 33sylbi 119 1 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wo 662   = wceq 1287  wcel 1436   class class class wbr 3822  cfv 4983  (class class class)co 5615  0cc0 7297  1c1 7298   · cmul 7302   < clt 7469  cmin 7600   / cdiv 8081  cn 8360  0cn0 8609  cz 8686  cuz 8954  ...cfz 9359  !cfa 10033  Ccbc 10055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-po 4099  df-iso 4100  df-iord 4169  df-on 4171  df-ilim 4172  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-frec 6112  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003  df-div 8082  df-inn 8361  df-n0 8610  df-z 8687  df-uz 8955  df-q 9040  df-fz 9360  df-iseq 9783  df-fac 10034  df-bc 10056
This theorem is referenced by:  bcnp1n  10067  bcn2m1  10077  bcn2p1  10078  bcnm1  10080
  Copyright terms: Public domain W3C validator