| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bcn1 | GIF version | ||
| Description: Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
| Ref | Expression |
|---|---|
| bcn1 | ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9332 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | 1eluzge0 9730 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘0) | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ (ℤ≥‘0)) |
| 4 | elnnuz 9720 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
| 5 | 4 | biimpi 120 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
| 6 | elfzuzb 10176 | . . . . . 6 ⊢ (1 ∈ (0...𝑁) ↔ (1 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘1))) | |
| 7 | 3, 5, 6 | sylanbrc 417 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ (0...𝑁)) |
| 8 | bcval2 10932 | . . . . 5 ⊢ (1 ∈ (0...𝑁) → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1)))) | |
| 9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1)))) |
| 10 | facnn2 10916 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁)) | |
| 11 | fac1 10911 | . . . . . . 7 ⊢ (!‘1) = 1 | |
| 12 | 11 | oveq2i 5978 | . . . . . 6 ⊢ ((!‘(𝑁 − 1)) · (!‘1)) = ((!‘(𝑁 − 1)) · 1) |
| 13 | nnm1nn0 9371 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 14 | 13 | faccld 10918 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ) |
| 15 | 14 | nncnd 9085 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℂ) |
| 16 | 15 | mulridd 8124 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · 1) = (!‘(𝑁 − 1))) |
| 17 | 12, 16 | eqtrid 2252 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘1)) = (!‘(𝑁 − 1))) |
| 18 | 10, 17 | oveq12d 5985 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))) = (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1)))) |
| 19 | nncn 9079 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 20 | 14 | nnap0d 9117 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) # 0) |
| 21 | 19, 15, 20 | divcanap3d 8903 | . . . 4 ⊢ (𝑁 ∈ ℕ → (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))) = 𝑁) |
| 22 | 9, 18, 21 | 3eqtrd 2244 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁C1) = 𝑁) |
| 23 | 0nn0 9345 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 24 | 1z 9433 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 25 | 0lt1 8234 | . . . . . 6 ⊢ 0 < 1 | |
| 26 | 25 | olci 734 | . . . . 5 ⊢ (1 < 0 ∨ 0 < 1) |
| 27 | bcval4 10934 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ (1 < 0 ∨ 0 < 1)) → (0C1) = 0) | |
| 28 | 23, 24, 26, 27 | mp3an 1350 | . . . 4 ⊢ (0C1) = 0 |
| 29 | oveq1 5974 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁C1) = (0C1)) | |
| 30 | eqeq12 2220 | . . . . 5 ⊢ (((𝑁C1) = (0C1) ∧ 𝑁 = 0) → ((𝑁C1) = 𝑁 ↔ (0C1) = 0)) | |
| 31 | 29, 30 | mpancom 422 | . . . 4 ⊢ (𝑁 = 0 → ((𝑁C1) = 𝑁 ↔ (0C1) = 0)) |
| 32 | 28, 31 | mpbiri 168 | . . 3 ⊢ (𝑁 = 0 → (𝑁C1) = 𝑁) |
| 33 | 22, 32 | jaoi 718 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁C1) = 𝑁) |
| 34 | 1, 33 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 0cc0 7960 1c1 7961 · cmul 7965 < clt 8142 − cmin 8278 / cdiv 8780 ℕcn 9071 ℕ0cn0 9330 ℤcz 9407 ℤ≥cuz 9683 ...cfz 10165 !cfa 10907 Ccbc 10929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-fz 10166 df-seqfrec 10630 df-fac 10908 df-bc 10930 |
| This theorem is referenced by: bcnp1n 10941 bcn2m1 10951 bcn2p1 10952 bcnm1 10954 |
| Copyright terms: Public domain | W3C validator |