ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn1 GIF version

Theorem bcn1 10829
Description: Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn1 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)

Proof of Theorem bcn1
StepHypRef Expression
1 elnn0 9242 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 1eluzge0 9639 . . . . . . 7 1 ∈ (ℤ‘0)
32a1i 9 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ (ℤ‘0))
4 elnnuz 9629 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
54biimpi 120 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
6 elfzuzb 10085 . . . . . 6 (1 ∈ (0...𝑁) ↔ (1 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ‘1)))
73, 5, 6sylanbrc 417 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ (0...𝑁))
8 bcval2 10821 . . . . 5 (1 ∈ (0...𝑁) → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))))
97, 8syl 14 . . . 4 (𝑁 ∈ ℕ → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))))
10 facnn2 10805 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
11 fac1 10800 . . . . . . 7 (!‘1) = 1
1211oveq2i 5929 . . . . . 6 ((!‘(𝑁 − 1)) · (!‘1)) = ((!‘(𝑁 − 1)) · 1)
13 nnm1nn0 9281 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1413faccld 10807 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ)
1514nncnd 8996 . . . . . . 7 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℂ)
1615mulridd 8036 . . . . . 6 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · 1) = (!‘(𝑁 − 1)))
1712, 16eqtrid 2238 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘1)) = (!‘(𝑁 − 1)))
1810, 17oveq12d 5936 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))) = (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))))
19 nncn 8990 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2014nnap0d 9028 . . . . 5 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) # 0)
2119, 15, 20divcanap3d 8814 . . . 4 (𝑁 ∈ ℕ → (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))) = 𝑁)
229, 18, 213eqtrd 2230 . . 3 (𝑁 ∈ ℕ → (𝑁C1) = 𝑁)
23 0nn0 9255 . . . . 5 0 ∈ ℕ0
24 1z 9343 . . . . 5 1 ∈ ℤ
25 0lt1 8146 . . . . . 6 0 < 1
2625olci 733 . . . . 5 (1 < 0 ∨ 0 < 1)
27 bcval4 10823 . . . . 5 ((0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ (1 < 0 ∨ 0 < 1)) → (0C1) = 0)
2823, 24, 26, 27mp3an 1348 . . . 4 (0C1) = 0
29 oveq1 5925 . . . . 5 (𝑁 = 0 → (𝑁C1) = (0C1))
30 eqeq12 2206 . . . . 5 (((𝑁C1) = (0C1) ∧ 𝑁 = 0) → ((𝑁C1) = 𝑁 ↔ (0C1) = 0))
3129, 30mpancom 422 . . . 4 (𝑁 = 0 → ((𝑁C1) = 𝑁 ↔ (0C1) = 0))
3228, 31mpbiri 168 . . 3 (𝑁 = 0 → (𝑁C1) = 𝑁)
3322, 32jaoi 717 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁C1) = 𝑁)
341, 33sylbi 121 1 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  0cc0 7872  1c1 7873   · cmul 7877   < clt 8054  cmin 8190   / cdiv 8691  cn 8982  0cn0 9240  cz 9317  cuz 9592  ...cfz 10074  !cfa 10796  Ccbc 10818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-fz 10075  df-seqfrec 10519  df-fac 10797  df-bc 10819
This theorem is referenced by:  bcnp1n  10830  bcn2m1  10840  bcn2p1  10841  bcnm1  10843
  Copyright terms: Public domain W3C validator