ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb3 GIF version

Theorem clelsb3 2192
Description: Substitution applied to an atomic wff (class version of elsb3 1900). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb3 ([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem clelsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1466 . . 3 𝑦 𝑤𝐴
21sbco2 1887 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤𝐴 ↔ [𝑥 / 𝑤]𝑤𝐴)
3 nfv 1466 . . . 4 𝑤 𝑦𝐴
4 eleq1 2150 . . . 4 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
53, 4sbie 1721 . . 3 ([𝑦 / 𝑤]𝑤𝐴𝑦𝐴)
65sbbii 1695 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤𝐴 ↔ [𝑥 / 𝑦]𝑦𝐴)
7 nfv 1466 . . 3 𝑤 𝑥𝐴
8 eleq1 2150 . . 3 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
97, 8sbie 1721 . 2 ([𝑥 / 𝑤]𝑤𝐴𝑥𝐴)
102, 6, 93bitr3i 208 1 ([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 103  wcel 1438  [wsb 1692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-cleq 2081  df-clel 2084
This theorem is referenced by:  hblem  2195  nfraldya  2412  nfrexdya  2413  cbvreu  2588  sbcel1v  2901  rmo3  2930  setindel  4354  elirr  4357  en2lp  4370  zfregfr  4389  tfi  4397  bdcriota  11774
  Copyright terms: Public domain W3C validator