ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb3 GIF version

Theorem clelsb3 2244
Description: Substitution applied to an atomic wff (class version of elsb3 1951). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb3 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . 3 𝑥 𝑤𝐴
21sbco2 1938 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝐴 ↔ [𝑦 / 𝑤]𝑤𝐴)
3 nfv 1508 . . . 4 𝑤 𝑥𝐴
4 eleq1 2202 . . . 4 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
53, 4sbie 1764 . . 3 ([𝑥 / 𝑤]𝑤𝐴𝑥𝐴)
65sbbii 1738 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝐴 ↔ [𝑦 / 𝑥]𝑥𝐴)
7 nfv 1508 . . 3 𝑤 𝑦𝐴
8 eleq1 2202 . . 3 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
97, 8sbie 1764 . 2 ([𝑦 / 𝑤]𝑤𝐴𝑦𝐴)
102, 6, 93bitr3i 209 1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1480  [wsb 1735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-cleq 2132  df-clel 2135
This theorem is referenced by:  hblem  2247  nfraldya  2469  nfrexdya  2470  cbvreu  2652  sbcel1v  2971  rmo3  3000  setindel  4453  elirr  4456  en2lp  4469  zfregfr  4488  tfi  4496  bdcriota  13111
  Copyright terms: Public domain W3C validator