ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi GIF version

Theorem dmi 4915
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3491 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 a9ev 1723 . . . 4 𝑦 𝑦 = 𝑥
3 vex 2782 . . . . . . 7 𝑦 ∈ V
43ideq 4851 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 1732 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 184 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1631 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 146 . . 3 𝑦 𝑥 I 𝑦
9 vex 2782 . . . 4 𝑥 ∈ V
109eldm 4897 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 146 . 2 𝑥 ∈ dom I
121, 11mpgbir 1479 1 dom I = V
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wex 1518  wcel 2180  Vcvv 2779   class class class wbr 4062   I cid 4356  dom cdm 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-dm 4706
This theorem is referenced by:  dmv  4916  iprc  4969  dmresi  5036  climshft2  11783
  Copyright terms: Public domain W3C validator