Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmi | GIF version |
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmi | ⊢ dom I = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3424 | . 2 ⊢ (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I ) | |
2 | a9ev 1684 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑥 | |
3 | vex 2725 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | ideq 4751 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
5 | equcom 1693 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
6 | 4, 5 | bitri 183 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑦 = 𝑥) |
7 | 6 | exbii 1592 | . . . 4 ⊢ (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥) |
8 | 2, 7 | mpbir 145 | . . 3 ⊢ ∃𝑦 𝑥 I 𝑦 |
9 | vex 2725 | . . . 4 ⊢ 𝑥 ∈ V | |
10 | 9 | eldm 4796 | . . 3 ⊢ (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦) |
11 | 8, 10 | mpbir 145 | . 2 ⊢ 𝑥 ∈ dom I |
12 | 1, 11 | mpgbir 1440 | 1 ⊢ dom I = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1342 ∃wex 1479 ∈ wcel 2135 Vcvv 2722 class class class wbr 3977 I cid 4261 dom cdm 4599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2724 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-br 3978 df-opab 4039 df-id 4266 df-xp 4605 df-rel 4606 df-dm 4609 |
This theorem is referenced by: dmv 4815 iprc 4867 dmresi 4934 climshft2 11237 |
Copyright terms: Public domain | W3C validator |