ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi GIF version

Theorem dmi 4814
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3424 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 a9ev 1684 . . . 4 𝑦 𝑦 = 𝑥
3 vex 2725 . . . . . . 7 𝑦 ∈ V
43ideq 4751 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 1693 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 183 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1592 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 145 . . 3 𝑦 𝑥 I 𝑦
9 vex 2725 . . . 4 𝑥 ∈ V
109eldm 4796 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 145 . 2 𝑥 ∈ dom I
121, 11mpgbir 1440 1 dom I = V
Colors of variables: wff set class
Syntax hints:   = wceq 1342  wex 1479  wcel 2135  Vcvv 2722   class class class wbr 3977   I cid 4261  dom cdm 4599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-br 3978  df-opab 4039  df-id 4266  df-xp 4605  df-rel 4606  df-dm 4609
This theorem is referenced by:  dmv  4815  iprc  4867  dmresi  4934  climshft2  11237
  Copyright terms: Public domain W3C validator