| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmi | GIF version | ||
| Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmi | ⊢ dom I = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqv 3481 | . 2 ⊢ (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I ) | |
| 2 | a9ev 1721 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 3 | vex 2776 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 3 | ideq 4834 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 5 | equcom 1730 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 6 | 4, 5 | bitri 184 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑦 = 𝑥) |
| 7 | 6 | exbii 1629 | . . . 4 ⊢ (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥) |
| 8 | 2, 7 | mpbir 146 | . . 3 ⊢ ∃𝑦 𝑥 I 𝑦 |
| 9 | vex 2776 | . . . 4 ⊢ 𝑥 ∈ V | |
| 10 | 9 | eldm 4880 | . . 3 ⊢ (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦) |
| 11 | 8, 10 | mpbir 146 | . 2 ⊢ 𝑥 ∈ dom I |
| 12 | 1, 11 | mpgbir 1477 | 1 ⊢ dom I = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 class class class wbr 4047 I cid 4339 dom cdm 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-dm 4689 |
| This theorem is referenced by: dmv 4899 iprc 4952 dmresi 5019 climshft2 11661 |
| Copyright terms: Public domain | W3C validator |