| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmi | GIF version | ||
| Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmi | ⊢ dom I = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqv 3491 | . 2 ⊢ (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I ) | |
| 2 | a9ev 1723 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 3 | vex 2782 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 3 | ideq 4851 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 5 | equcom 1732 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 6 | 4, 5 | bitri 184 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑦 = 𝑥) |
| 7 | 6 | exbii 1631 | . . . 4 ⊢ (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥) |
| 8 | 2, 7 | mpbir 146 | . . 3 ⊢ ∃𝑦 𝑥 I 𝑦 |
| 9 | vex 2782 | . . . 4 ⊢ 𝑥 ∈ V | |
| 10 | 9 | eldm 4897 | . . 3 ⊢ (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦) |
| 11 | 8, 10 | mpbir 146 | . 2 ⊢ 𝑥 ∈ dom I |
| 12 | 1, 11 | mpgbir 1479 | 1 ⊢ dom I = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∃wex 1518 ∈ wcel 2180 Vcvv 2779 class class class wbr 4062 I cid 4356 dom cdm 4696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-dm 4706 |
| This theorem is referenced by: dmv 4916 iprc 4969 dmresi 5036 climshft2 11783 |
| Copyright terms: Public domain | W3C validator |