ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi GIF version

Theorem dmi 4882
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3471 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 a9ev 1711 . . . 4 𝑦 𝑦 = 𝑥
3 vex 2766 . . . . . . 7 𝑦 ∈ V
43ideq 4819 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 1720 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 184 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1619 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 146 . . 3 𝑦 𝑥 I 𝑦
9 vex 2766 . . . 4 𝑥 ∈ V
109eldm 4864 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 146 . 2 𝑥 ∈ dom I
121, 11mpgbir 1467 1 dom I = V
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763   class class class wbr 4034   I cid 4324  dom cdm 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-dm 4674
This theorem is referenced by:  dmv  4883  iprc  4935  dmresi  5002  climshft2  11488
  Copyright terms: Public domain W3C validator