ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi GIF version

Theorem dmi 4819
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3428 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 a9ev 1685 . . . 4 𝑦 𝑦 = 𝑥
3 vex 2729 . . . . . . 7 𝑦 ∈ V
43ideq 4756 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 1694 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 183 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1593 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 145 . . 3 𝑦 𝑥 I 𝑦
9 vex 2729 . . . 4 𝑥 ∈ V
109eldm 4801 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 145 . 2 𝑥 ∈ dom I
121, 11mpgbir 1441 1 dom I = V
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726   class class class wbr 3982   I cid 4266  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-dm 4614
This theorem is referenced by:  dmv  4820  iprc  4872  dmresi  4939  climshft2  11247
  Copyright terms: Public domain W3C validator