ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi GIF version

Theorem dmi 4898
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3481 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 a9ev 1721 . . . 4 𝑦 𝑦 = 𝑥
3 vex 2776 . . . . . . 7 𝑦 ∈ V
43ideq 4834 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 1730 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 184 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1629 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 146 . . 3 𝑦 𝑥 I 𝑦
9 vex 2776 . . . 4 𝑥 ∈ V
109eldm 4880 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 146 . 2 𝑥 ∈ dom I
121, 11mpgbir 1477 1 dom I = V
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773   class class class wbr 4047   I cid 4339  dom cdm 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-dm 4689
This theorem is referenced by:  dmv  4899  iprc  4952  dmresi  5019  climshft2  11661
  Copyright terms: Public domain W3C validator