![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmi | GIF version |
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmi | ⊢ dom I = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3444 | . 2 ⊢ (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I ) | |
2 | a9ev 1697 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑥 | |
3 | vex 2742 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | ideq 4781 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
5 | equcom 1706 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
6 | 4, 5 | bitri 184 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑦 = 𝑥) |
7 | 6 | exbii 1605 | . . . 4 ⊢ (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥) |
8 | 2, 7 | mpbir 146 | . . 3 ⊢ ∃𝑦 𝑥 I 𝑦 |
9 | vex 2742 | . . . 4 ⊢ 𝑥 ∈ V | |
10 | 9 | eldm 4826 | . . 3 ⊢ (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦) |
11 | 8, 10 | mpbir 146 | . 2 ⊢ 𝑥 ∈ dom I |
12 | 1, 11 | mpgbir 1453 | 1 ⊢ dom I = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 class class class wbr 4005 I cid 4290 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-dm 4638 |
This theorem is referenced by: dmv 4845 iprc 4897 dmresi 4964 climshft2 11316 |
Copyright terms: Public domain | W3C validator |