![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notm0 | GIF version |
Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.) |
Ref | Expression |
---|---|
notm0 | ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3305 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
2 | alnex 1434 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ¬ ∃𝑥 𝑥 ∈ 𝐴) | |
3 | 1, 2 | bitr2i 184 | 1 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∀wal 1288 = wceq 1290 ∃wex 1427 ∈ wcel 1439 ∅c0 3287 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-dif 3002 df-nul 3288 |
This theorem is referenced by: disjnim 3842 exmidn0m 4039 mapprc 6423 map0g 6459 ixpprc 6490 ixp0 6502 exmidfodomrlemim 6881 ntreq0 11886 |
Copyright terms: Public domain | W3C validator |