| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notm0 | GIF version | ||
| Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| Ref | Expression |
|---|---|
| notm0 | ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3469 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | alnex 1513 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ¬ ∃𝑥 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | bitr2i 185 | 1 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∅c0 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3451 |
| This theorem is referenced by: disjnim 4024 pwntru 4232 exmidn0m 4234 mapprc 6711 map0g 6747 ixpprc 6778 ixp0 6790 exmidfodomrlemim 7268 ntreq0 14368 blssioo 14789 lgsquadlem3 15320 pwtrufal 15642 |
| Copyright terms: Public domain | W3C validator |