| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notm0 | GIF version | ||
| Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| Ref | Expression |
|---|---|
| notm0 | ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3510 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | alnex 1545 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ¬ ∃𝑥 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | bitr2i 185 | 1 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1393 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: disjnim 4072 pwntru 4282 exmidn0m 4284 mapprc 6789 map0g 6825 ixpprc 6856 ixp0 6868 exmidfodomrlemim 7367 ntreq0 14791 blssioo 15212 lgsquadlem3 15743 pw0ss 15868 pwtrufal 16294 |
| Copyright terms: Public domain | W3C validator |