ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notm0 GIF version

Theorem notm0 3512
Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
notm0 (¬ ∃𝑥 𝑥𝐴𝐴 = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem notm0
StepHypRef Expression
1 eq0 3510 . 2 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
2 alnex 1545 . 2 (∀𝑥 ¬ 𝑥𝐴 ↔ ¬ ∃𝑥 𝑥𝐴)
31, 2bitr2i 185 1 (¬ ∃𝑥 𝑥𝐴𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1393   = wceq 1395  wex 1538  wcel 2200  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by:  disjnim  4072  pwntru  4282  exmidn0m  4284  mapprc  6789  map0g  6825  ixpprc  6856  ixp0  6868  exmidfodomrlemim  7367  ntreq0  14791  blssioo  15212  lgsquadlem3  15743  pw0ss  15868  pwtrufal  16294
  Copyright terms: Public domain W3C validator