ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notm0 GIF version

Theorem notm0 3483
Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
notm0 (¬ ∃𝑥 𝑥𝐴𝐴 = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem notm0
StepHypRef Expression
1 eq0 3481 . 2 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
2 alnex 1523 . 2 (∀𝑥 ¬ 𝑥𝐴 ↔ ¬ ∃𝑥 𝑥𝐴)
31, 2bitr2i 185 1 (¬ ∃𝑥 𝑥𝐴𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1371   = wceq 1373  wex 1516  wcel 2177  c0 3462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3170  df-nul 3463
This theorem is referenced by:  disjnim  4038  pwntru  4248  exmidn0m  4250  mapprc  6749  map0g  6785  ixpprc  6816  ixp0  6828  exmidfodomrlemim  7322  ntreq0  14654  blssioo  15075  lgsquadlem3  15606  pw0ss  15729  pwtrufal  16049
  Copyright terms: Public domain W3C validator