| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nsr | GIF version | ||
| Description: The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) |
| Ref | Expression |
|---|---|
| 0nsr | ⊢ ¬ ∅ ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . 2 ⊢ ∅ = ∅ | |
| 2 | enrer 7878 | . . . . . 6 ⊢ ~R Er (P × P) | |
| 3 | erdm 6648 | . . . . . 6 ⊢ ( ~R Er (P × P) → dom ~R = (P × P)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ dom ~R = (P × P) |
| 5 | elqsn0 6709 | . . . . 5 ⊢ ((dom ~R = (P × P) ∧ ∅ ∈ ((P × P) / ~R )) → ∅ ≠ ∅) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (∅ ∈ ((P × P) / ~R ) → ∅ ≠ ∅) |
| 7 | df-nr 7870 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
| 8 | 6, 7 | eleq2s 2301 | . . 3 ⊢ (∅ ∈ R → ∅ ≠ ∅) |
| 9 | 8 | necon2bi 2432 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ R) |
| 10 | 1, 9 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ R |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∅c0 3464 × cxp 4686 dom cdm 4688 Er wer 6635 / cqs 6637 Pcnp 7434 ~R cer 7439 Rcnr 7440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-eprel 4349 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-1o 6520 df-2o 6521 df-oadd 6524 df-omul 6525 df-er 6638 df-ec 6640 df-qs 6644 df-ni 7447 df-pli 7448 df-mi 7449 df-lti 7450 df-plpq 7487 df-mpq 7488 df-enq 7490 df-nqqs 7491 df-plqqs 7492 df-mqqs 7493 df-1nqqs 7494 df-rq 7495 df-ltnqqs 7496 df-enq0 7567 df-nq0 7568 df-0nq0 7569 df-plq0 7570 df-mq0 7571 df-inp 7609 df-iplp 7611 df-enr 7869 df-nr 7870 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |