ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs2 GIF version

Theorem uniqs2 6597
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
qsss.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
uniqs2 (𝜑 (𝐴 / 𝑅) = 𝐴)

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5 (𝜑𝑅𝑉)
2 uniqs 6595 . . . . 5 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
31, 2syl 14 . . . 4 (𝜑 (𝐴 / 𝑅) = (𝑅𝐴))
4 qsss.1 . . . . . 6 (𝜑𝑅 Er 𝐴)
5 erdm 6547 . . . . . 6 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
64, 5syl 14 . . . . 5 (𝜑 → dom 𝑅 = 𝐴)
76imaeq2d 4972 . . . 4 (𝜑 → (𝑅 “ dom 𝑅) = (𝑅𝐴))
83, 7eqtr4d 2213 . . 3 (𝜑 (𝐴 / 𝑅) = (𝑅 “ dom 𝑅))
9 imadmrn 4982 . . 3 (𝑅 “ dom 𝑅) = ran 𝑅
108, 9eqtrdi 2226 . 2 (𝜑 (𝐴 / 𝑅) = ran 𝑅)
11 errn 6559 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
124, 11syl 14 . 2 (𝜑 → ran 𝑅 = 𝐴)
1310, 12eqtrd 2210 1 (𝜑 (𝐴 / 𝑅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148   cuni 3811  dom cdm 4628  ran crn 4629  cima 4631   Er wer 6534   / cqs 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-er 6537  df-ec 6539  df-qs 6543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator