ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs2 GIF version

Theorem uniqs2 6489
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
qsss.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
uniqs2 (𝜑 (𝐴 / 𝑅) = 𝐴)

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5 (𝜑𝑅𝑉)
2 uniqs 6487 . . . . 5 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
31, 2syl 14 . . . 4 (𝜑 (𝐴 / 𝑅) = (𝑅𝐴))
4 qsss.1 . . . . . 6 (𝜑𝑅 Er 𝐴)
5 erdm 6439 . . . . . 6 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
64, 5syl 14 . . . . 5 (𝜑 → dom 𝑅 = 𝐴)
76imaeq2d 4881 . . . 4 (𝜑 → (𝑅 “ dom 𝑅) = (𝑅𝐴))
83, 7eqtr4d 2175 . . 3 (𝜑 (𝐴 / 𝑅) = (𝑅 “ dom 𝑅))
9 imadmrn 4891 . . 3 (𝑅 “ dom 𝑅) = ran 𝑅
108, 9syl6eq 2188 . 2 (𝜑 (𝐴 / 𝑅) = ran 𝑅)
11 errn 6451 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
124, 11syl 14 . 2 (𝜑 → ran 𝑅 = 𝐴)
1310, 12eqtrd 2172 1 (𝜑 (𝐴 / 𝑅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480   cuni 3736  dom cdm 4539  ran crn 4540  cima 4542   Er wer 6426   / cqs 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-er 6429  df-ec 6431  df-qs 6435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator