| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniqs2 | GIF version | ||
| Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| Ref | Expression |
|---|---|
| qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
| qsss.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| uniqs2 | ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsss.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 2 | uniqs 6692 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| 4 | qsss.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
| 5 | erdm 6642 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
| 6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
| 7 | 6 | imaeq2d 5030 | . . . 4 ⊢ (𝜑 → (𝑅 “ dom 𝑅) = (𝑅 “ 𝐴)) |
| 8 | 3, 7 | eqtr4d 2242 | . . 3 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ dom 𝑅)) |
| 9 | imadmrn 5040 | . . 3 ⊢ (𝑅 “ dom 𝑅) = ran 𝑅 | |
| 10 | 8, 9 | eqtrdi 2255 | . 2 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = ran 𝑅) |
| 11 | errn 6654 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
| 12 | 4, 11 | syl 14 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝐴) |
| 13 | 10, 12 | eqtrd 2239 | 1 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∪ cuni 3855 dom cdm 4682 ran crn 4683 “ cima 4685 Er wer 6629 / cqs 6631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-iun 3934 df-br 4051 df-opab 4113 df-xp 4688 df-rel 4689 df-cnv 4690 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-er 6632 df-ec 6634 df-qs 6638 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |