ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs2 GIF version

Theorem uniqs2 6694
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
qsss.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
uniqs2 (𝜑 (𝐴 / 𝑅) = 𝐴)

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5 (𝜑𝑅𝑉)
2 uniqs 6692 . . . . 5 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
31, 2syl 14 . . . 4 (𝜑 (𝐴 / 𝑅) = (𝑅𝐴))
4 qsss.1 . . . . . 6 (𝜑𝑅 Er 𝐴)
5 erdm 6642 . . . . . 6 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
64, 5syl 14 . . . . 5 (𝜑 → dom 𝑅 = 𝐴)
76imaeq2d 5030 . . . 4 (𝜑 → (𝑅 “ dom 𝑅) = (𝑅𝐴))
83, 7eqtr4d 2242 . . 3 (𝜑 (𝐴 / 𝑅) = (𝑅 “ dom 𝑅))
9 imadmrn 5040 . . 3 (𝑅 “ dom 𝑅) = ran 𝑅
108, 9eqtrdi 2255 . 2 (𝜑 (𝐴 / 𝑅) = ran 𝑅)
11 errn 6654 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
124, 11syl 14 . 2 (𝜑 → ran 𝑅 = 𝐴)
1310, 12eqtrd 2239 1 (𝜑 (𝐴 / 𝑅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177   cuni 3855  dom cdm 4682  ran crn 4683  cima 4685   Er wer 6629   / cqs 6631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-iun 3934  df-br 4051  df-opab 4113  df-xp 4688  df-rel 4689  df-cnv 4690  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-er 6632  df-ec 6634  df-qs 6638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator