Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniqs2 | GIF version |
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
qsss.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
uniqs2 | ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsss.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | uniqs 6583 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
4 | qsss.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
5 | erdm 6535 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
7 | 6 | imaeq2d 4963 | . . . 4 ⊢ (𝜑 → (𝑅 “ dom 𝑅) = (𝑅 “ 𝐴)) |
8 | 3, 7 | eqtr4d 2211 | . . 3 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ dom 𝑅)) |
9 | imadmrn 4973 | . . 3 ⊢ (𝑅 “ dom 𝑅) = ran 𝑅 | |
10 | 8, 9 | eqtrdi 2224 | . 2 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = ran 𝑅) |
11 | errn 6547 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
12 | 4, 11 | syl 14 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝐴) |
13 | 10, 12 | eqtrd 2208 | 1 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ∪ cuni 3805 dom cdm 4620 ran crn 4621 “ cima 4623 Er wer 6522 / cqs 6524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-er 6525 df-ec 6527 df-qs 6531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |