ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs2 GIF version

Theorem uniqs2 6366
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
qsss.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
uniqs2 (𝜑 (𝐴 / 𝑅) = 𝐴)

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5 (𝜑𝑅𝑉)
2 uniqs 6364 . . . . 5 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
31, 2syl 14 . . . 4 (𝜑 (𝐴 / 𝑅) = (𝑅𝐴))
4 qsss.1 . . . . . 6 (𝜑𝑅 Er 𝐴)
5 erdm 6316 . . . . . 6 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
64, 5syl 14 . . . . 5 (𝜑 → dom 𝑅 = 𝐴)
76imaeq2d 4787 . . . 4 (𝜑 → (𝑅 “ dom 𝑅) = (𝑅𝐴))
83, 7eqtr4d 2124 . . 3 (𝜑 (𝐴 / 𝑅) = (𝑅 “ dom 𝑅))
9 imadmrn 4797 . . 3 (𝑅 “ dom 𝑅) = ran 𝑅
108, 9syl6eq 2137 . 2 (𝜑 (𝐴 / 𝑅) = ran 𝑅)
11 errn 6328 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
124, 11syl 14 . 2 (𝜑 → ran 𝑅 = 𝐴)
1310, 12eqtrd 2121 1 (𝜑 (𝐴 / 𝑅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1290  wcel 1439   cuni 3659  dom cdm 4452  ran crn 4453  cima 4455   Er wer 6303   / cqs 6305
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-xp 4458  df-rel 4459  df-cnv 4460  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-er 6306  df-ec 6308  df-qs 6312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator