Proof of Theorem nnnq0lem1
Step | Hyp | Ref
| Expression |
1 | | enq0er 7397 |
. . . . . 6
⊢
~Q0 Er (ω ×
N) |
2 | | erdm 6523 |
. . . . . 6
⊢ (
~Q0 Er (ω × N) → dom
~Q0 = (ω ×
N)) |
3 | 1, 2 | ax-mp 5 |
. . . . 5
⊢ dom
~Q0 = (ω ×
N) |
4 | | simpll 524 |
. . . . . 6
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
𝐴 ∈ ((ω ×
N) / ~Q0 )) |
5 | | simplll 528 |
. . . . . . . 8
⊢ ((((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 )) →
𝐴 = [〈𝑤, 𝑣〉] ~Q0
) |
6 | 5 | eleq1d 2239 |
. . . . . . 7
⊢ ((((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 )) →
(𝐴 ∈ ((ω ×
N) / ~Q0 ) ↔ [〈𝑤, 𝑣〉] ~Q0 ∈
((ω × N) / ~Q0
))) |
7 | 6 | adantl 275 |
. . . . . 6
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(𝐴 ∈ ((ω ×
N) / ~Q0 ) ↔ [〈𝑤, 𝑣〉] ~Q0 ∈
((ω × N) / ~Q0
))) |
8 | 4, 7 | mpbid 146 |
. . . . 5
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
[〈𝑤, 𝑣〉]
~Q0 ∈ ((ω × N) /
~Q0 )) |
9 | | ecelqsdm 6583 |
. . . . 5
⊢ ((dom
~Q0 = (ω × N) ∧
[〈𝑤, 𝑣〉]
~Q0 ∈ ((ω × N) /
~Q0 )) → 〈𝑤, 𝑣〉 ∈ (ω ×
N)) |
10 | 3, 8, 9 | sylancr 412 |
. . . 4
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
〈𝑤, 𝑣〉 ∈ (ω ×
N)) |
11 | | opelxp 4641 |
. . . 4
⊢
(〈𝑤, 𝑣〉 ∈ (ω ×
N) ↔ (𝑤
∈ ω ∧ 𝑣
∈ N)) |
12 | 10, 11 | sylib 121 |
. . 3
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(𝑤 ∈ ω ∧
𝑣 ∈
N)) |
13 | | simprll 532 |
. . . . . . . 8
⊢ ((((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 )) →
𝐴 = [〈𝑠, 𝑓〉] ~Q0
) |
14 | 13 | eleq1d 2239 |
. . . . . . 7
⊢ ((((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 )) →
(𝐴 ∈ ((ω ×
N) / ~Q0 ) ↔ [〈𝑠, 𝑓〉] ~Q0 ∈
((ω × N) / ~Q0
))) |
15 | 14 | adantl 275 |
. . . . . 6
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(𝐴 ∈ ((ω ×
N) / ~Q0 ) ↔ [〈𝑠, 𝑓〉] ~Q0 ∈
((ω × N) / ~Q0
))) |
16 | 4, 15 | mpbid 146 |
. . . . 5
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
[〈𝑠, 𝑓〉]
~Q0 ∈ ((ω × N) /
~Q0 )) |
17 | | ecelqsdm 6583 |
. . . . 5
⊢ ((dom
~Q0 = (ω × N) ∧
[〈𝑠, 𝑓〉]
~Q0 ∈ ((ω × N) /
~Q0 )) → 〈𝑠, 𝑓〉 ∈ (ω ×
N)) |
18 | 3, 16, 17 | sylancr 412 |
. . . 4
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
〈𝑠, 𝑓〉 ∈ (ω ×
N)) |
19 | | opelxp 4641 |
. . . 4
⊢
(〈𝑠, 𝑓〉 ∈ (ω ×
N) ↔ (𝑠
∈ ω ∧ 𝑓
∈ N)) |
20 | 18, 19 | sylib 121 |
. . 3
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(𝑠 ∈ ω ∧
𝑓 ∈
N)) |
21 | 12, 20 | jca 304 |
. 2
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
((𝑤 ∈ ω ∧
𝑣 ∈ N)
∧ (𝑠 ∈ ω
∧ 𝑓 ∈
N))) |
22 | | simplr 525 |
. . . . . 6
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
𝐵 ∈ ((ω ×
N) / ~Q0 )) |
23 | | simpllr 529 |
. . . . . . . 8
⊢ ((((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 )) →
𝐵 = [〈𝑢, 𝑡〉] ~Q0
) |
24 | 23 | eleq1d 2239 |
. . . . . . 7
⊢ ((((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 )) →
(𝐵 ∈ ((ω ×
N) / ~Q0 ) ↔ [〈𝑢, 𝑡〉] ~Q0 ∈
((ω × N) / ~Q0
))) |
25 | 24 | adantl 275 |
. . . . . 6
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(𝐵 ∈ ((ω ×
N) / ~Q0 ) ↔ [〈𝑢, 𝑡〉] ~Q0 ∈
((ω × N) / ~Q0
))) |
26 | 22, 25 | mpbid 146 |
. . . . 5
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
[〈𝑢, 𝑡〉]
~Q0 ∈ ((ω × N) /
~Q0 )) |
27 | | ecelqsdm 6583 |
. . . . 5
⊢ ((dom
~Q0 = (ω × N) ∧
[〈𝑢, 𝑡〉]
~Q0 ∈ ((ω × N) /
~Q0 )) → 〈𝑢, 𝑡〉 ∈ (ω ×
N)) |
28 | 3, 26, 27 | sylancr 412 |
. . . 4
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
〈𝑢, 𝑡〉 ∈ (ω ×
N)) |
29 | | opelxp 4641 |
. . . 4
⊢
(〈𝑢, 𝑡〉 ∈ (ω ×
N) ↔ (𝑢
∈ ω ∧ 𝑡
∈ N)) |
30 | 28, 29 | sylib 121 |
. . 3
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(𝑢 ∈ ω ∧
𝑡 ∈
N)) |
31 | | simprlr 533 |
. . . . . . . 8
⊢ ((((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 )) →
𝐵 = [〈𝑔, ℎ〉] ~Q0
) |
32 | 31 | eleq1d 2239 |
. . . . . . 7
⊢ ((((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 )) →
(𝐵 ∈ ((ω ×
N) / ~Q0 ) ↔ [〈𝑔, ℎ〉] ~Q0 ∈
((ω × N) / ~Q0
))) |
33 | 32 | adantl 275 |
. . . . . 6
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(𝐵 ∈ ((ω ×
N) / ~Q0 ) ↔ [〈𝑔, ℎ〉] ~Q0 ∈
((ω × N) / ~Q0
))) |
34 | 22, 33 | mpbid 146 |
. . . . 5
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
[〈𝑔, ℎ〉]
~Q0 ∈ ((ω × N) /
~Q0 )) |
35 | | ecelqsdm 6583 |
. . . . 5
⊢ ((dom
~Q0 = (ω × N) ∧
[〈𝑔, ℎ〉]
~Q0 ∈ ((ω × N) /
~Q0 )) → 〈𝑔, ℎ〉 ∈ (ω ×
N)) |
36 | 3, 34, 35 | sylancr 412 |
. . . 4
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
〈𝑔, ℎ〉 ∈ (ω ×
N)) |
37 | | opelxp 4641 |
. . . 4
⊢
(〈𝑔, ℎ〉 ∈ (ω ×
N) ↔ (𝑔
∈ ω ∧ ℎ
∈ N)) |
38 | 36, 37 | sylib 121 |
. . 3
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(𝑔 ∈ ω ∧
ℎ ∈
N)) |
39 | 30, 38 | jca 304 |
. 2
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
((𝑢 ∈ ω ∧
𝑡 ∈ N)
∧ (𝑔 ∈ ω
∧ ℎ ∈
N))) |
40 | 5, 13 | eqtr3d 2205 |
. . . . . 6
⊢ ((((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 )) →
[〈𝑤, 𝑣〉]
~Q0 = [〈𝑠, 𝑓〉] ~Q0
) |
41 | 40 | adantl 275 |
. . . . 5
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
[〈𝑤, 𝑣〉]
~Q0 = [〈𝑠, 𝑓〉] ~Q0
) |
42 | 1 | a1i 9 |
. . . . . 6
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
~Q0 Er (ω ×
N)) |
43 | 42, 10 | erth 6557 |
. . . . 5
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(〈𝑤, 𝑣〉
~Q0 〈𝑠, 𝑓〉 ↔ [〈𝑤, 𝑣〉] ~Q0 =
[〈𝑠, 𝑓〉]
~Q0 )) |
44 | 41, 43 | mpbird 166 |
. . . 4
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
〈𝑤, 𝑣〉 ~Q0
〈𝑠, 𝑓〉) |
45 | | enq0breq 7398 |
. . . . 5
⊢ (((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧
(𝑠 ∈ ω ∧
𝑓 ∈ N))
→ (〈𝑤, 𝑣〉
~Q0 〈𝑠, 𝑓〉 ↔ (𝑤 ·o 𝑓) = (𝑣 ·o 𝑠))) |
46 | 12, 20, 45 | syl2anc 409 |
. . . 4
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(〈𝑤, 𝑣〉
~Q0 〈𝑠, 𝑓〉 ↔ (𝑤 ·o 𝑓) = (𝑣 ·o 𝑠))) |
47 | 44, 46 | mpbid 146 |
. . 3
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(𝑤 ·o
𝑓) = (𝑣 ·o 𝑠)) |
48 | 23, 31 | eqtr3d 2205 |
. . . . . 6
⊢ ((((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 )) →
[〈𝑢, 𝑡〉]
~Q0 = [〈𝑔, ℎ〉] ~Q0
) |
49 | 48 | adantl 275 |
. . . . 5
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
[〈𝑢, 𝑡〉]
~Q0 = [〈𝑔, ℎ〉] ~Q0
) |
50 | 42, 28 | erth 6557 |
. . . . 5
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(〈𝑢, 𝑡〉
~Q0 〈𝑔, ℎ〉 ↔ [〈𝑢, 𝑡〉] ~Q0 =
[〈𝑔, ℎ〉]
~Q0 )) |
51 | 49, 50 | mpbird 166 |
. . . 4
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
〈𝑢, 𝑡〉 ~Q0
〈𝑔, ℎ〉) |
52 | | enq0breq 7398 |
. . . . 5
⊢ (((𝑢 ∈ ω ∧ 𝑡 ∈ N) ∧
(𝑔 ∈ ω ∧
ℎ ∈ N))
→ (〈𝑢, 𝑡〉
~Q0 〈𝑔, ℎ〉 ↔ (𝑢 ·o ℎ) = (𝑡 ·o 𝑔))) |
53 | 30, 38, 52 | syl2anc 409 |
. . . 4
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(〈𝑢, 𝑡〉
~Q0 〈𝑔, ℎ〉 ↔ (𝑢 ·o ℎ) = (𝑡 ·o 𝑔))) |
54 | 51, 53 | mpbid 146 |
. . 3
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
(𝑢 ·o
ℎ) = (𝑡 ·o 𝑔)) |
55 | 47, 54 | jca 304 |
. 2
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
((𝑤 ·o
𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ℎ) = (𝑡 ·o 𝑔))) |
56 | 21, 39, 55 | jca31 307 |
1
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [𝐶] ~Q0 ) ∧
((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [𝐷] ~Q0 ))) →
((((𝑤 ∈ ω ∧
𝑣 ∈ N)
∧ (𝑠 ∈ ω
∧ 𝑓 ∈
N)) ∧ ((𝑢
∈ ω ∧ 𝑡
∈ N) ∧ (𝑔 ∈ ω ∧ ℎ ∈ N))) ∧ ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ℎ) = (𝑡 ·o 𝑔)))) |