| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erexb | GIF version | ||
| Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erexb | ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 4941 | . . 3 ⊢ (𝑅 ∈ V → dom 𝑅 ∈ V) | |
| 2 | erdm 6629 | . . . 4 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
| 3 | 2 | eleq1d 2273 | . . 3 ⊢ (𝑅 Er 𝐴 → (dom 𝑅 ∈ V ↔ 𝐴 ∈ V)) |
| 4 | 1, 3 | imbitrid 154 | . 2 ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V → 𝐴 ∈ V)) |
| 5 | erex 6643 | . 2 ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ V → 𝑅 ∈ V)) | |
| 6 | 4, 5 | impbid 129 | 1 ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2175 Vcvv 2771 dom cdm 4674 Er wer 6616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-rel 4681 df-cnv 4682 df-dm 4684 df-rn 4685 df-er 6619 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |