Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gt0srpr | GIF version |
Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) |
Ref | Expression |
---|---|
gt0srpr | ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrer 7638 | . . . . 5 ⊢ ~R Er (P × P) | |
2 | erdm 6483 | . . . . 5 ⊢ ( ~R Er (P × P) → dom ~R = (P × P)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ dom ~R = (P × P) |
4 | ltrelsr 7641 | . . . . . . 7 ⊢ <R ⊆ (R × R) | |
5 | 4 | brel 4635 | . . . . . 6 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → (0R ∈ R ∧ [〈𝐴, 𝐵〉] ~R ∈ R)) |
6 | 5 | simprd 113 | . . . . 5 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → [〈𝐴, 𝐵〉] ~R ∈ R) |
7 | df-nr 7630 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
8 | 6, 7 | eleqtrdi 2250 | . . . 4 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → [〈𝐴, 𝐵〉] ~R ∈ ((P × P) / ~R )) |
9 | ecelqsdm 6543 | . . . 4 ⊢ ((dom ~R = (P × P) ∧ [〈𝐴, 𝐵〉] ~R ∈ ((P × P) / ~R )) → 〈𝐴, 𝐵〉 ∈ (P × P)) | |
10 | 3, 8, 9 | sylancr 411 | . . 3 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → 〈𝐴, 𝐵〉 ∈ (P × P)) |
11 | opelxp 4613 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (P × P) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ P)) | |
12 | 10, 11 | sylib 121 | . 2 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
13 | ltrelpr 7408 | . . . 4 ⊢ <P ⊆ (P × P) | |
14 | 13 | brel 4635 | . . 3 ⊢ (𝐵<P 𝐴 → (𝐵 ∈ P ∧ 𝐴 ∈ P)) |
15 | 14 | ancomd 265 | . 2 ⊢ (𝐵<P 𝐴 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
16 | df-0r 7634 | . . . . 5 ⊢ 0R = [〈1P, 1P〉] ~R | |
17 | 16 | breq1i 3972 | . . . 4 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ [〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ) |
18 | 1pr 7457 | . . . . 5 ⊢ 1P ∈ P | |
19 | ltsrprg 7650 | . . . . 5 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ (𝐴 ∈ P ∧ 𝐵 ∈ P)) → ([〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
20 | 18, 18, 19 | mpanl12 433 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ([〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
21 | 17, 20 | syl5bb 191 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (0R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
22 | ltaprg 7522 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P ∧ 1P ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
23 | 18, 22 | mp3an3 1308 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
24 | 23 | ancoms 266 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
25 | 21, 24 | bitr4d 190 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴)) |
26 | 12, 15, 25 | pm5.21nii 694 | 1 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 〈cop 3563 class class class wbr 3965 × cxp 4581 dom cdm 4583 (class class class)co 5818 Er wer 6470 [cec 6471 / cqs 6472 Pcnp 7194 1Pc1p 7195 +P cpp 7196 <P cltp 7198 ~R cer 7199 Rcnr 7200 0Rc0r 7201 <R cltr 7206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-1o 6357 df-2o 6358 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-lti 7210 df-plpq 7247 df-mpq 7248 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-mqqs 7253 df-1nqqs 7254 df-rq 7255 df-ltnqqs 7256 df-enq0 7327 df-nq0 7328 df-0nq0 7329 df-plq0 7330 df-mq0 7331 df-inp 7369 df-i1p 7370 df-iplp 7371 df-iltp 7373 df-enr 7629 df-nr 7630 df-ltr 7633 df-0r 7634 |
This theorem is referenced by: recexgt0sr 7676 mulgt0sr 7681 srpospr 7686 prsrpos 7688 |
Copyright terms: Public domain | W3C validator |