Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gt0srpr | GIF version |
Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) |
Ref | Expression |
---|---|
gt0srpr | ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrer 7676 | . . . . 5 ⊢ ~R Er (P × P) | |
2 | erdm 6511 | . . . . 5 ⊢ ( ~R Er (P × P) → dom ~R = (P × P)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ dom ~R = (P × P) |
4 | ltrelsr 7679 | . . . . . . 7 ⊢ <R ⊆ (R × R) | |
5 | 4 | brel 4656 | . . . . . 6 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → (0R ∈ R ∧ [〈𝐴, 𝐵〉] ~R ∈ R)) |
6 | 5 | simprd 113 | . . . . 5 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → [〈𝐴, 𝐵〉] ~R ∈ R) |
7 | df-nr 7668 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
8 | 6, 7 | eleqtrdi 2259 | . . . 4 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → [〈𝐴, 𝐵〉] ~R ∈ ((P × P) / ~R )) |
9 | ecelqsdm 6571 | . . . 4 ⊢ ((dom ~R = (P × P) ∧ [〈𝐴, 𝐵〉] ~R ∈ ((P × P) / ~R )) → 〈𝐴, 𝐵〉 ∈ (P × P)) | |
10 | 3, 8, 9 | sylancr 411 | . . 3 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → 〈𝐴, 𝐵〉 ∈ (P × P)) |
11 | opelxp 4634 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (P × P) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ P)) | |
12 | 10, 11 | sylib 121 | . 2 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
13 | ltrelpr 7446 | . . . 4 ⊢ <P ⊆ (P × P) | |
14 | 13 | brel 4656 | . . 3 ⊢ (𝐵<P 𝐴 → (𝐵 ∈ P ∧ 𝐴 ∈ P)) |
15 | 14 | ancomd 265 | . 2 ⊢ (𝐵<P 𝐴 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
16 | df-0r 7672 | . . . . 5 ⊢ 0R = [〈1P, 1P〉] ~R | |
17 | 16 | breq1i 3989 | . . . 4 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ [〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ) |
18 | 1pr 7495 | . . . . 5 ⊢ 1P ∈ P | |
19 | ltsrprg 7688 | . . . . 5 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ (𝐴 ∈ P ∧ 𝐵 ∈ P)) → ([〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
20 | 18, 18, 19 | mpanl12 433 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ([〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
21 | 17, 20 | syl5bb 191 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (0R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
22 | ltaprg 7560 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P ∧ 1P ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
23 | 18, 22 | mp3an3 1316 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
24 | 23 | ancoms 266 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
25 | 21, 24 | bitr4d 190 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴)) |
26 | 12, 15, 25 | pm5.21nii 694 | 1 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 〈cop 3579 class class class wbr 3982 × cxp 4602 dom cdm 4604 (class class class)co 5842 Er wer 6498 [cec 6499 / cqs 6500 Pcnp 7232 1Pc1p 7233 +P cpp 7234 <P cltp 7236 ~R cer 7237 Rcnr 7238 0Rc0r 7239 <R cltr 7244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-iltp 7411 df-enr 7667 df-nr 7668 df-ltr 7671 df-0r 7672 |
This theorem is referenced by: recexgt0sr 7714 mulgt0sr 7719 srpospr 7724 prsrpos 7726 |
Copyright terms: Public domain | W3C validator |