![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gt0srpr | GIF version |
Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) |
Ref | Expression |
---|---|
gt0srpr | ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrer 7764 | . . . . 5 ⊢ ~R Er (P × P) | |
2 | erdm 6569 | . . . . 5 ⊢ ( ~R Er (P × P) → dom ~R = (P × P)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ dom ~R = (P × P) |
4 | ltrelsr 7767 | . . . . . . 7 ⊢ <R ⊆ (R × R) | |
5 | 4 | brel 4696 | . . . . . 6 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → (0R ∈ R ∧ [〈𝐴, 𝐵〉] ~R ∈ R)) |
6 | 5 | simprd 114 | . . . . 5 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → [〈𝐴, 𝐵〉] ~R ∈ R) |
7 | df-nr 7756 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
8 | 6, 7 | eleqtrdi 2282 | . . . 4 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → [〈𝐴, 𝐵〉] ~R ∈ ((P × P) / ~R )) |
9 | ecelqsdm 6631 | . . . 4 ⊢ ((dom ~R = (P × P) ∧ [〈𝐴, 𝐵〉] ~R ∈ ((P × P) / ~R )) → 〈𝐴, 𝐵〉 ∈ (P × P)) | |
10 | 3, 8, 9 | sylancr 414 | . . 3 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → 〈𝐴, 𝐵〉 ∈ (P × P)) |
11 | opelxp 4674 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (P × P) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ P)) | |
12 | 10, 11 | sylib 122 | . 2 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
13 | ltrelpr 7534 | . . . 4 ⊢ <P ⊆ (P × P) | |
14 | 13 | brel 4696 | . . 3 ⊢ (𝐵<P 𝐴 → (𝐵 ∈ P ∧ 𝐴 ∈ P)) |
15 | 14 | ancomd 267 | . 2 ⊢ (𝐵<P 𝐴 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
16 | df-0r 7760 | . . . . 5 ⊢ 0R = [〈1P, 1P〉] ~R | |
17 | 16 | breq1i 4025 | . . . 4 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ [〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ) |
18 | 1pr 7583 | . . . . 5 ⊢ 1P ∈ P | |
19 | ltsrprg 7776 | . . . . 5 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ (𝐴 ∈ P ∧ 𝐵 ∈ P)) → ([〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
20 | 18, 18, 19 | mpanl12 436 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ([〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
21 | 17, 20 | bitrid 192 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (0R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
22 | ltaprg 7648 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P ∧ 1P ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
23 | 18, 22 | mp3an3 1337 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
24 | 23 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
25 | 21, 24 | bitr4d 191 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴)) |
26 | 12, 15, 25 | pm5.21nii 705 | 1 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 〈cop 3610 class class class wbr 4018 × cxp 4642 dom cdm 4644 (class class class)co 5896 Er wer 6556 [cec 6557 / cqs 6558 Pcnp 7320 1Pc1p 7321 +P cpp 7322 <P cltp 7324 ~R cer 7325 Rcnr 7326 0Rc0r 7327 <R cltr 7332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4307 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-recs 6330 df-irdg 6395 df-1o 6441 df-2o 6442 df-oadd 6445 df-omul 6446 df-er 6559 df-ec 6561 df-qs 6565 df-ni 7333 df-pli 7334 df-mi 7335 df-lti 7336 df-plpq 7373 df-mpq 7374 df-enq 7376 df-nqqs 7377 df-plqqs 7378 df-mqqs 7379 df-1nqqs 7380 df-rq 7381 df-ltnqqs 7382 df-enq0 7453 df-nq0 7454 df-0nq0 7455 df-plq0 7456 df-mq0 7457 df-inp 7495 df-i1p 7496 df-iplp 7497 df-iltp 7499 df-enr 7755 df-nr 7756 df-ltr 7759 df-0r 7760 |
This theorem is referenced by: recexgt0sr 7802 mulgt0sr 7807 srpospr 7812 prsrpos 7814 |
Copyright terms: Public domain | W3C validator |