ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0srpr GIF version

Theorem gt0srpr 7860
Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
Assertion
Ref Expression
gt0srpr (0R <R [⟨𝐴, 𝐵⟩] ~R𝐵<P 𝐴)

Proof of Theorem gt0srpr
StepHypRef Expression
1 enrer 7847 . . . . 5 ~R Er (P × P)
2 erdm 6629 . . . . 5 ( ~R Er (P × P) → dom ~R = (P × P))
31, 2ax-mp 5 . . . 4 dom ~R = (P × P)
4 ltrelsr 7850 . . . . . . 7 <R ⊆ (R × R)
54brel 4726 . . . . . 6 (0R <R [⟨𝐴, 𝐵⟩] ~R → (0RR ∧ [⟨𝐴, 𝐵⟩] ~RR))
65simprd 114 . . . . 5 (0R <R [⟨𝐴, 𝐵⟩] ~R → [⟨𝐴, 𝐵⟩] ~RR)
7 df-nr 7839 . . . . 5 R = ((P × P) / ~R )
86, 7eleqtrdi 2297 . . . 4 (0R <R [⟨𝐴, 𝐵⟩] ~R → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ))
9 ecelqsdm 6691 . . . 4 ((dom ~R = (P × P) ∧ [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝐴, 𝐵⟩ ∈ (P × P))
103, 8, 9sylancr 414 . . 3 (0R <R [⟨𝐴, 𝐵⟩] ~R → ⟨𝐴, 𝐵⟩ ∈ (P × P))
11 opelxp 4704 . . 3 (⟨𝐴, 𝐵⟩ ∈ (P × P) ↔ (𝐴P𝐵P))
1210, 11sylib 122 . 2 (0R <R [⟨𝐴, 𝐵⟩] ~R → (𝐴P𝐵P))
13 ltrelpr 7617 . . . 4 <P ⊆ (P × P)
1413brel 4726 . . 3 (𝐵<P 𝐴 → (𝐵P𝐴P))
1514ancomd 267 . 2 (𝐵<P 𝐴 → (𝐴P𝐵P))
16 df-0r 7843 . . . . 5 0R = [⟨1P, 1P⟩] ~R
1716breq1i 4050 . . . 4 (0R <R [⟨𝐴, 𝐵⟩] ~R ↔ [⟨1P, 1P⟩] ~R <R [⟨𝐴, 𝐵⟩] ~R )
18 1pr 7666 . . . . 5 1PP
19 ltsrprg 7859 . . . . 5 (((1PP ∧ 1PP) ∧ (𝐴P𝐵P)) → ([⟨1P, 1P⟩] ~R <R [⟨𝐴, 𝐵⟩] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
2018, 18, 19mpanl12 436 . . . 4 ((𝐴P𝐵P) → ([⟨1P, 1P⟩] ~R <R [⟨𝐴, 𝐵⟩] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
2117, 20bitrid 192 . . 3 ((𝐴P𝐵P) → (0R <R [⟨𝐴, 𝐵⟩] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
22 ltaprg 7731 . . . . 5 ((𝐵P𝐴P ∧ 1PP) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
2318, 22mp3an3 1338 . . . 4 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
2423ancoms 268 . . 3 ((𝐴P𝐵P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
2521, 24bitr4d 191 . 2 ((𝐴P𝐵P) → (0R <R [⟨𝐴, 𝐵⟩] ~R𝐵<P 𝐴))
2612, 15, 25pm5.21nii 705 1 (0R <R [⟨𝐴, 𝐵⟩] ~R𝐵<P 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1372  wcel 2175  cop 3635   class class class wbr 4043   × cxp 4672  dom cdm 4674  (class class class)co 5943   Er wer 6616  [cec 6617   / cqs 6618  Pcnp 7403  1Pc1p 7404   +P cpp 7405  <P cltp 7407   ~R cer 7408  Rcnr 7409  0Rc0r 7410   <R cltr 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-i1p 7579  df-iplp 7580  df-iltp 7582  df-enr 7838  df-nr 7839  df-ltr 7842  df-0r 7843
This theorem is referenced by:  recexgt0sr  7885  mulgt0sr  7890  srpospr  7895  prsrpos  7897
  Copyright terms: Public domain W3C validator