![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gt0srpr | GIF version |
Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) |
Ref | Expression |
---|---|
gt0srpr | ⊢ (0R <R [⟨𝐴, 𝐵⟩] ~R ↔ 𝐵<P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrer 7736 | . . . . 5 ⊢ ~R Er (P × P) | |
2 | erdm 6547 | . . . . 5 ⊢ ( ~R Er (P × P) → dom ~R = (P × P)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ dom ~R = (P × P) |
4 | ltrelsr 7739 | . . . . . . 7 ⊢ <R ⊆ (R × R) | |
5 | 4 | brel 4680 | . . . . . 6 ⊢ (0R <R [⟨𝐴, 𝐵⟩] ~R → (0R ∈ R ∧ [⟨𝐴, 𝐵⟩] ~R ∈ R)) |
6 | 5 | simprd 114 | . . . . 5 ⊢ (0R <R [⟨𝐴, 𝐵⟩] ~R → [⟨𝐴, 𝐵⟩] ~R ∈ R) |
7 | df-nr 7728 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
8 | 6, 7 | eleqtrdi 2270 | . . . 4 ⊢ (0R <R [⟨𝐴, 𝐵⟩] ~R → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R )) |
9 | ecelqsdm 6607 | . . . 4 ⊢ ((dom ~R = (P × P) ∧ [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝐴, 𝐵⟩ ∈ (P × P)) | |
10 | 3, 8, 9 | sylancr 414 | . . 3 ⊢ (0R <R [⟨𝐴, 𝐵⟩] ~R → ⟨𝐴, 𝐵⟩ ∈ (P × P)) |
11 | opelxp 4658 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ (P × P) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ P)) | |
12 | 10, 11 | sylib 122 | . 2 ⊢ (0R <R [⟨𝐴, 𝐵⟩] ~R → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
13 | ltrelpr 7506 | . . . 4 ⊢ <P ⊆ (P × P) | |
14 | 13 | brel 4680 | . . 3 ⊢ (𝐵<P 𝐴 → (𝐵 ∈ P ∧ 𝐴 ∈ P)) |
15 | 14 | ancomd 267 | . 2 ⊢ (𝐵<P 𝐴 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
16 | df-0r 7732 | . . . . 5 ⊢ 0R = [⟨1P, 1P⟩] ~R | |
17 | 16 | breq1i 4012 | . . . 4 ⊢ (0R <R [⟨𝐴, 𝐵⟩] ~R ↔ [⟨1P, 1P⟩] ~R <R [⟨𝐴, 𝐵⟩] ~R ) |
18 | 1pr 7555 | . . . . 5 ⊢ 1P ∈ P | |
19 | ltsrprg 7748 | . . . . 5 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ (𝐴 ∈ P ∧ 𝐵 ∈ P)) → ([⟨1P, 1P⟩] ~R <R [⟨𝐴, 𝐵⟩] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
20 | 18, 18, 19 | mpanl12 436 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ([⟨1P, 1P⟩] ~R <R [⟨𝐴, 𝐵⟩] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
21 | 17, 20 | bitrid 192 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (0R <R [⟨𝐴, 𝐵⟩] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
22 | ltaprg 7620 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P ∧ 1P ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
23 | 18, 22 | mp3an3 1326 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
24 | 23 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) |
25 | 21, 24 | bitr4d 191 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (0R <R [⟨𝐴, 𝐵⟩] ~R ↔ 𝐵<P 𝐴)) |
26 | 12, 15, 25 | pm5.21nii 704 | 1 ⊢ (0R <R [⟨𝐴, 𝐵⟩] ~R ↔ 𝐵<P 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 class class class wbr 4005 × cxp 4626 dom cdm 4628 (class class class)co 5877 Er wer 6534 [cec 6535 / cqs 6536 Pcnp 7292 1Pc1p 7293 +P cpp 7294 <P cltp 7296 ~R cer 7297 Rcnr 7298 0Rc0r 7299 <R cltr 7304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-2o 6420 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-enq0 7425 df-nq0 7426 df-0nq0 7427 df-plq0 7428 df-mq0 7429 df-inp 7467 df-i1p 7468 df-iplp 7469 df-iltp 7471 df-enr 7727 df-nr 7728 df-ltr 7731 df-0r 7732 |
This theorem is referenced by: recexgt0sr 7774 mulgt0sr 7779 srpospr 7784 prsrpos 7786 |
Copyright terms: Public domain | W3C validator |