ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0srpr GIF version

Theorem gt0srpr 7749
Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
Assertion
Ref Expression
gt0srpr (0R <R [⟨𝐴, 𝐵⟩] ~R𝐵<P 𝐴)

Proof of Theorem gt0srpr
StepHypRef Expression
1 enrer 7736 . . . . 5 ~R Er (P × P)
2 erdm 6547 . . . . 5 ( ~R Er (P × P) → dom ~R = (P × P))
31, 2ax-mp 5 . . . 4 dom ~R = (P × P)
4 ltrelsr 7739 . . . . . . 7 <R ⊆ (R × R)
54brel 4680 . . . . . 6 (0R <R [⟨𝐴, 𝐵⟩] ~R → (0RR ∧ [⟨𝐴, 𝐵⟩] ~RR))
65simprd 114 . . . . 5 (0R <R [⟨𝐴, 𝐵⟩] ~R → [⟨𝐴, 𝐵⟩] ~RR)
7 df-nr 7728 . . . . 5 R = ((P × P) / ~R )
86, 7eleqtrdi 2270 . . . 4 (0R <R [⟨𝐴, 𝐵⟩] ~R → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ))
9 ecelqsdm 6607 . . . 4 ((dom ~R = (P × P) ∧ [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝐴, 𝐵⟩ ∈ (P × P))
103, 8, 9sylancr 414 . . 3 (0R <R [⟨𝐴, 𝐵⟩] ~R → ⟨𝐴, 𝐵⟩ ∈ (P × P))
11 opelxp 4658 . . 3 (⟨𝐴, 𝐵⟩ ∈ (P × P) ↔ (𝐴P𝐵P))
1210, 11sylib 122 . 2 (0R <R [⟨𝐴, 𝐵⟩] ~R → (𝐴P𝐵P))
13 ltrelpr 7506 . . . 4 <P ⊆ (P × P)
1413brel 4680 . . 3 (𝐵<P 𝐴 → (𝐵P𝐴P))
1514ancomd 267 . 2 (𝐵<P 𝐴 → (𝐴P𝐵P))
16 df-0r 7732 . . . . 5 0R = [⟨1P, 1P⟩] ~R
1716breq1i 4012 . . . 4 (0R <R [⟨𝐴, 𝐵⟩] ~R ↔ [⟨1P, 1P⟩] ~R <R [⟨𝐴, 𝐵⟩] ~R )
18 1pr 7555 . . . . 5 1PP
19 ltsrprg 7748 . . . . 5 (((1PP ∧ 1PP) ∧ (𝐴P𝐵P)) → ([⟨1P, 1P⟩] ~R <R [⟨𝐴, 𝐵⟩] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
2018, 18, 19mpanl12 436 . . . 4 ((𝐴P𝐵P) → ([⟨1P, 1P⟩] ~R <R [⟨𝐴, 𝐵⟩] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
2117, 20bitrid 192 . . 3 ((𝐴P𝐵P) → (0R <R [⟨𝐴, 𝐵⟩] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
22 ltaprg 7620 . . . . 5 ((𝐵P𝐴P ∧ 1PP) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
2318, 22mp3an3 1326 . . . 4 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
2423ancoms 268 . . 3 ((𝐴P𝐵P) → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴)))
2521, 24bitr4d 191 . 2 ((𝐴P𝐵P) → (0R <R [⟨𝐴, 𝐵⟩] ~R𝐵<P 𝐴))
2612, 15, 25pm5.21nii 704 1 (0R <R [⟨𝐴, 𝐵⟩] ~R𝐵<P 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wcel 2148  cop 3597   class class class wbr 4005   × cxp 4626  dom cdm 4628  (class class class)co 5877   Er wer 6534  [cec 6535   / cqs 6536  Pcnp 7292  1Pc1p 7293   +P cpp 7294  <P cltp 7296   ~R cer 7297  Rcnr 7298  0Rc0r 7299   <R cltr 7304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-i1p 7468  df-iplp 7469  df-iltp 7471  df-enr 7727  df-nr 7728  df-ltr 7731  df-0r 7732
This theorem is referenced by:  recexgt0sr  7774  mulgt0sr  7779  srpospr  7784  prsrpos  7786
  Copyright terms: Public domain W3C validator