ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  errn GIF version

Theorem errn 6623
Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errn (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)

Proof of Theorem errn
StepHypRef Expression
1 df-rn 4675 . 2 ran 𝑅 = dom 𝑅
2 ercnv 6622 . . . 4 (𝑅 Er 𝐴𝑅 = 𝑅)
32dmeqd 4869 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = dom 𝑅)
4 erdm 6611 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
53, 4eqtrd 2229 . 2 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
61, 5eqtrid 2241 1 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ccnv 4663  dom cdm 4664  ran crn 4665   Er wer 6598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675  df-er 6601
This theorem is referenced by:  erssxp  6624  ecss  6644  uniqs2  6663
  Copyright terms: Public domain W3C validator