ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrlem1 GIF version

Theorem prsrlem1 7267
Description: Decomposing signed reals into positive reals. Lemma for addsrpr 7270 and mulsrpr 7271. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
prsrlem1 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
Distinct variable group:   𝑓,𝑔,,𝑠,𝑡,𝑢,𝑣,𝑤
Allowed substitution hints:   𝐴(𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠)   𝐵(𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠)

Proof of Theorem prsrlem1
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 7260 . . . . . 6 ~R Er (P × P)
2 erdm 6282 . . . . . 6 ( ~R Er (P × P) → dom ~R = (P × P))
31, 2ax-mp 7 . . . . 5 dom ~R = (P × P)
4 simprll 504 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐴 = [⟨𝑤, 𝑣⟩] ~R )
5 simpll 496 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐴 ∈ ((P × P) / ~R ))
64, 5eqeltrrd 2165 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑤, 𝑣⟩] ~R ∈ ((P × P) / ~R ))
7 ecelqsdm 6342 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑤, 𝑣⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑤, 𝑣⟩ ∈ (P × P))
83, 6, 7sylancr 405 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑤, 𝑣⟩ ∈ (P × P))
9 opelxp 4457 . . . 4 (⟨𝑤, 𝑣⟩ ∈ (P × P) ↔ (𝑤P𝑣P))
108, 9sylib 120 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑤P𝑣P))
11 simprrl 506 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐴 = [⟨𝑠, 𝑓⟩] ~R )
1211, 5eqeltrrd 2165 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑠, 𝑓⟩] ~R ∈ ((P × P) / ~R ))
13 ecelqsdm 6342 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑠, 𝑓⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑠, 𝑓⟩ ∈ (P × P))
143, 12, 13sylancr 405 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑠, 𝑓⟩ ∈ (P × P))
15 opelxp 4457 . . . 4 (⟨𝑠, 𝑓⟩ ∈ (P × P) ↔ (𝑠P𝑓P))
1614, 15sylib 120 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑠P𝑓P))
1710, 16jca 300 . 2 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((𝑤P𝑣P) ∧ (𝑠P𝑓P)))
18 simprlr 505 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐵 = [⟨𝑢, 𝑡⟩] ~R )
19 simplr 497 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐵 ∈ ((P × P) / ~R ))
2018, 19eqeltrrd 2165 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑢, 𝑡⟩] ~R ∈ ((P × P) / ~R ))
21 ecelqsdm 6342 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑢, 𝑡⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑢, 𝑡⟩ ∈ (P × P))
223, 20, 21sylancr 405 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑢, 𝑡⟩ ∈ (P × P))
23 opelxp 4457 . . . 4 (⟨𝑢, 𝑡⟩ ∈ (P × P) ↔ (𝑢P𝑡P))
2422, 23sylib 120 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑢P𝑡P))
25 simprrr 507 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐵 = [⟨𝑔, ⟩] ~R )
2625, 19eqeltrrd 2165 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑔, ⟩] ~R ∈ ((P × P) / ~R ))
27 ecelqsdm 6342 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑔, ⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑔, ⟩ ∈ (P × P))
283, 26, 27sylancr 405 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑔, ⟩ ∈ (P × P))
29 opelxp 4457 . . . 4 (⟨𝑔, ⟩ ∈ (P × P) ↔ (𝑔PP))
3028, 29sylib 120 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑔PP))
3124, 30jca 300 . 2 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((𝑢P𝑡P) ∧ (𝑔PP)))
324, 11eqtr3d 2122 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R )
331a1i 9 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ~R Er (P × P))
3433, 8erth 6316 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩ ↔ [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R ))
3532, 34mpbird 165 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩)
36 df-enr 7251 . . . . . 6 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑦 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 +P 𝑑) = (𝑏 +P 𝑐)))}
3736ecopoveq 6367 . . . . 5 (((𝑤P𝑣P) ∧ (𝑠P𝑓P)) → (⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩ ↔ (𝑤 +P 𝑓) = (𝑣 +P 𝑠)))
3810, 16, 37syl2anc 403 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩ ↔ (𝑤 +P 𝑓) = (𝑣 +P 𝑠)))
3935, 38mpbid 145 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑤 +P 𝑓) = (𝑣 +P 𝑠))
4018, 25eqtr3d 2122 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R )
4133, 22erth 6316 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑢, 𝑡⟩ ~R𝑔, ⟩ ↔ [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R ))
4240, 41mpbird 165 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑢, 𝑡⟩ ~R𝑔, ⟩)
4336ecopoveq 6367 . . . . 5 (((𝑢P𝑡P) ∧ (𝑔PP)) → (⟨𝑢, 𝑡⟩ ~R𝑔, ⟩ ↔ (𝑢 +P ) = (𝑡 +P 𝑔)))
4424, 30, 43syl2anc 403 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑢, 𝑡⟩ ~R𝑔, ⟩ ↔ (𝑢 +P ) = (𝑡 +P 𝑔)))
4542, 44mpbid 145 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑢 +P ) = (𝑡 +P 𝑔))
4639, 45jca 300 . 2 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔)))
4717, 31, 46jca31 302 1 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438  cop 3444   class class class wbr 3837   × cxp 4426  dom cdm 4428  (class class class)co 5634   Er wer 6269  [cec 6270   / cqs 6271  Pcnp 6829   +P cpp 6831   ~R cer 6834
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-eprel 4107  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-1o 6163  df-2o 6164  df-oadd 6167  df-omul 6168  df-er 6272  df-ec 6274  df-qs 6278  df-ni 6842  df-pli 6843  df-mi 6844  df-lti 6845  df-plpq 6882  df-mpq 6883  df-enq 6885  df-nqqs 6886  df-plqqs 6887  df-mqqs 6888  df-1nqqs 6889  df-rq 6890  df-ltnqqs 6891  df-enq0 6962  df-nq0 6963  df-0nq0 6964  df-plq0 6965  df-mq0 6966  df-inp 7004  df-iplp 7006  df-enr 7251
This theorem is referenced by:  addsrmo  7268  mulsrmo  7269
  Copyright terms: Public domain W3C validator