ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereldm GIF version

Theorem ereldm 6683
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ereldm.1 (𝜑𝑅 Er 𝑋)
ereldm.2 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
Assertion
Ref Expression
ereldm (𝜑 → (𝐴𝑋𝐵𝑋))

Proof of Theorem ereldm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ereldm.2 . . . . 5 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
21eleq2d 2276 . . . 4 (𝜑 → (𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑅))
32exbidv 1849 . . 3 (𝜑 → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐵]𝑅))
4 ecdmn0m 6682 . . 3 (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
5 ecdmn0m 6682 . . 3 (𝐵 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐵]𝑅)
63, 4, 53bitr4g 223 . 2 (𝜑 → (𝐴 ∈ dom 𝑅𝐵 ∈ dom 𝑅))
7 ereldm.1 . . . 4 (𝜑𝑅 Er 𝑋)
8 erdm 6648 . . . 4 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
97, 8syl 14 . . 3 (𝜑 → dom 𝑅 = 𝑋)
109eleq2d 2276 . 2 (𝜑 → (𝐴 ∈ dom 𝑅𝐴𝑋))
119eleq2d 2276 . 2 (𝜑 → (𝐵 ∈ dom 𝑅𝐵𝑋))
126, 10, 113bitr3d 218 1 (𝜑 → (𝐴𝑋𝐵𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wex 1516  wcel 2177  dom cdm 4688   Er wer 6635  [cec 6636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-er 6638  df-ec 6640
This theorem is referenced by:  erth  6684  brecop  6730
  Copyright terms: Public domain W3C validator