| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ereldm | GIF version | ||
| Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ereldm.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ereldm.2 | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Ref | Expression |
|---|---|
| ereldm | ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ereldm.2 | . . . . 5 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | |
| 2 | 1 | eleq2d 2299 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ [𝐴]𝑅 ↔ 𝑥 ∈ [𝐵]𝑅)) |
| 3 | 2 | exbidv 1871 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐵]𝑅)) |
| 4 | ecdmn0m 6722 | . . 3 ⊢ (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) | |
| 5 | ecdmn0m 6722 | . . 3 ⊢ (𝐵 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐵]𝑅) | |
| 6 | 3, 4, 5 | 3bitr4g 223 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ 𝐵 ∈ dom 𝑅)) |
| 7 | ereldm.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 8 | erdm 6688 | . . . 4 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
| 10 | 9 | eleq2d 2299 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ 𝐴 ∈ 𝑋)) |
| 11 | 9 | eleq2d 2299 | . 2 ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐵 ∈ 𝑋)) |
| 12 | 6, 10, 11 | 3bitr3d 218 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 dom cdm 4718 Er wer 6675 [cec 6676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-er 6678 df-ec 6680 |
| This theorem is referenced by: erth 6724 brecop 6770 |
| Copyright terms: Public domain | W3C validator |