Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ereldm | GIF version |
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereldm.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ereldm.2 | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Ref | Expression |
---|---|
ereldm | ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ereldm.2 | . . . . 5 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | |
2 | 1 | eleq2d 2240 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ [𝐴]𝑅 ↔ 𝑥 ∈ [𝐵]𝑅)) |
3 | 2 | exbidv 1818 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐵]𝑅)) |
4 | ecdmn0m 6555 | . . 3 ⊢ (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) | |
5 | ecdmn0m 6555 | . . 3 ⊢ (𝐵 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐵]𝑅) | |
6 | 3, 4, 5 | 3bitr4g 222 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ 𝐵 ∈ dom 𝑅)) |
7 | ereldm.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
8 | erdm 6523 | . . . 4 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
10 | 9 | eleq2d 2240 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ 𝐴 ∈ 𝑋)) |
11 | 9 | eleq2d 2240 | . 2 ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐵 ∈ 𝑋)) |
12 | 6, 10, 11 | 3bitr3d 217 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 dom cdm 4611 Er wer 6510 [cec 6511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-er 6513 df-ec 6515 |
This theorem is referenced by: erth 6557 brecop 6603 |
Copyright terms: Public domain | W3C validator |