ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereldm GIF version

Theorem ereldm 6723
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ereldm.1 (𝜑𝑅 Er 𝑋)
ereldm.2 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
Assertion
Ref Expression
ereldm (𝜑 → (𝐴𝑋𝐵𝑋))

Proof of Theorem ereldm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ereldm.2 . . . . 5 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
21eleq2d 2299 . . . 4 (𝜑 → (𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑅))
32exbidv 1871 . . 3 (𝜑 → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐵]𝑅))
4 ecdmn0m 6722 . . 3 (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
5 ecdmn0m 6722 . . 3 (𝐵 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐵]𝑅)
63, 4, 53bitr4g 223 . 2 (𝜑 → (𝐴 ∈ dom 𝑅𝐵 ∈ dom 𝑅))
7 ereldm.1 . . . 4 (𝜑𝑅 Er 𝑋)
8 erdm 6688 . . . 4 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
97, 8syl 14 . . 3 (𝜑 → dom 𝑅 = 𝑋)
109eleq2d 2299 . 2 (𝜑 → (𝐴 ∈ dom 𝑅𝐴𝑋))
119eleq2d 2299 . 2 (𝜑 → (𝐵 ∈ dom 𝑅𝐵𝑋))
126, 10, 113bitr3d 218 1 (𝜑 → (𝐴𝑋𝐵𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wex 1538  wcel 2200  dom cdm 4718   Er wer 6675  [cec 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-er 6678  df-ec 6680
This theorem is referenced by:  erth  6724  brecop  6770
  Copyright terms: Public domain W3C validator