ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feu GIF version

Theorem feu 5355
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
feu ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶

Proof of Theorem feu
StepHypRef Expression
1 ffn 5322 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fneu2 5278 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → ∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹)
31, 2sylan 281 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹)
4 opelf 5344 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → (𝐶𝐴𝑦𝐵))
54simprd 113 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → 𝑦𝐵)
65ex 114 . . . . . 6 (𝐹:𝐴𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹𝑦𝐵))
76pm4.71rd 392 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ (𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)))
87eubidv 2014 . . . 4 (𝐹:𝐴𝐵 → (∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)))
98adantr 274 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)))
103, 9mpbid 146 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))
11 df-reu 2442 . 2 (∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))
1210, 11sylibr 133 1 ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  ∃!weu 2006  wcel 2128  ∃!wreu 2437  cop 3564   Fn wfn 5168  wf 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-br 3968  df-opab 4029  df-id 4256  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-fun 5175  df-fn 5176  df-f 5177
This theorem is referenced by:  fsn  5642  f1ofveu  5815
  Copyright terms: Public domain W3C validator