![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > feu | GIF version |
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
feu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5403 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fneu2 5359 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹) | |
3 | 1, 2 | sylan 283 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹) |
4 | opelf 5425 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | simprd 114 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹) → 𝑦 ∈ 𝐵) |
6 | 5 | ex 115 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
7 | 6 | pm4.71rd 394 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝑦〉 ∈ 𝐹 ↔ (𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
8 | 7 | eubidv 2050 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
10 | 3, 9 | mpbid 147 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹)) |
11 | df-reu 2479 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹)) | |
12 | 10, 11 | sylibr 134 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃!weu 2042 ∈ wcel 2164 ∃!wreu 2474 〈cop 3621 Fn wfn 5249 ⟶wf 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-f 5258 |
This theorem is referenced by: fsn 5730 f1ofveu 5906 |
Copyright terms: Public domain | W3C validator |