ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feu GIF version

Theorem feu 5510
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
feu ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶

Proof of Theorem feu
StepHypRef Expression
1 ffn 5473 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fneu2 5428 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → ∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹)
31, 2sylan 283 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹)
4 opelf 5498 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → (𝐶𝐴𝑦𝐵))
54simprd 114 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → 𝑦𝐵)
65ex 115 . . . . . 6 (𝐹:𝐴𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹𝑦𝐵))
76pm4.71rd 394 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ (𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)))
87eubidv 2085 . . . 4 (𝐹:𝐴𝐵 → (∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)))
98adantr 276 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)))
103, 9mpbid 147 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))
11 df-reu 2515 . 2 (∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))
1210, 11sylibr 134 1 ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  ∃!weu 2077  wcel 2200  ∃!wreu 2510  cop 3669   Fn wfn 5313  wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  fdmeu  5679  fsn  5809  f1ofveu  5995
  Copyright terms: Public domain W3C validator