![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > feu | GIF version |
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
feu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5367 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fneu2 5323 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹) | |
3 | 1, 2 | sylan 283 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹) |
4 | opelf 5389 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | simprd 114 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ 𝐵) |
6 | 5 | ex 115 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
7 | 6 | pm4.71rd 394 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ (𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
8 | 7 | eubidv 2034 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
10 | 3, 9 | mpbid 147 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)) |
11 | df-reu 2462 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)) | |
12 | 10, 11 | sylibr 134 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃!weu 2026 ∈ wcel 2148 ∃!wreu 2457 ⟨cop 3597 Fn wfn 5213 ⟶wf 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 |
This theorem is referenced by: fsn 5690 f1ofveu 5865 |
Copyright terms: Public domain | W3C validator |