ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff4im GIF version

Theorem dff4im 5393
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
dff4im (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dff4im
StepHypRef Expression
1 dff3im 5392 . 2 (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
2 df-br 3815 . . . . . . . 8 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
3 ssel 3006 . . . . . . . . 9 (𝐹 ⊆ (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
4 opelxp2 4437 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑦𝐵)
53, 4syl6 33 . . . . . . . 8 (𝐹 ⊆ (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
62, 5syl5bi 150 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦𝑦𝐵))
76pm4.71rd 386 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 ↔ (𝑦𝐵𝑥𝐹𝑦)))
87eubidv 1953 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦𝐵𝑥𝐹𝑦)))
9 df-reu 2362 . . . . 5 (∃!𝑦𝐵 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦𝐵𝑥𝐹𝑦))
108, 9syl6bbr 196 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦𝐵 𝑥𝐹𝑦))
1110ralbidv 2376 . . 3 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
1211pm5.32i 442 . 2 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
131, 12sylib 120 1 (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1436  ∃!weu 1945  wral 2355  ∃!wreu 2357  wss 2986  cop 3428   class class class wbr 3814   × cxp 4402  wf 4968
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-reu 2362  df-v 2616  df-sbc 2829  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-id 4087  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-fv 4980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator