Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff4im | GIF version |
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
dff4im | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff3im 5641 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) | |
2 | df-br 3990 | . . . . . . . 8 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
3 | ssel 3141 | . . . . . . . . 9 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
4 | opelxp2 4646 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑦 ∈ 𝐵) | |
5 | 3, 4 | syl6 33 | . . . . . . . 8 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
6 | 2, 5 | syl5bi 151 | . . . . . . 7 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 → 𝑦 ∈ 𝐵)) |
7 | 6 | pm4.71rd 392 | . . . . . 6 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
8 | 7 | eubidv 2027 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
9 | df-reu 2455 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) | |
10 | 8, 9 | bitr4di 197 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
11 | 10 | ralbidv 2470 | . . 3 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
12 | 11 | pm5.32i 451 | . 2 ⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
13 | 1, 12 | sylib 121 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃!weu 2019 ∈ wcel 2141 ∀wral 2448 ∃!wreu 2450 ⊆ wss 3121 〈cop 3586 class class class wbr 3989 × cxp 4609 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |