![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dff4im | GIF version |
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
dff4im | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff3im 5483 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) | |
2 | df-br 3868 | . . . . . . . 8 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
3 | ssel 3033 | . . . . . . . . 9 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
4 | opelxp2 4502 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑦 ∈ 𝐵) | |
5 | 3, 4 | syl6 33 | . . . . . . . 8 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
6 | 2, 5 | syl5bi 151 | . . . . . . 7 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 → 𝑦 ∈ 𝐵)) |
7 | 6 | pm4.71rd 387 | . . . . . 6 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
8 | 7 | eubidv 1963 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
9 | df-reu 2377 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) | |
10 | 8, 9 | syl6bbr 197 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
11 | 10 | ralbidv 2391 | . . 3 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
12 | 11 | pm5.32i 443 | . 2 ⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
13 | 1, 12 | sylib 121 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1445 ∃!weu 1955 ∀wral 2370 ∃!wreu 2372 ⊆ wss 3013 〈cop 3469 class class class wbr 3867 × cxp 4465 ⟶wf 5045 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-reu 2377 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |