ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicc GIF version

Theorem dedekindicc 13778
Description: A Dedekind cut identifies a unique real number. Similar to df-inp 7456 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindicc.ab (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
dedekindicc (𝜑 → ∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Distinct variable groups:   𝐴,𝑞,𝑟,𝑥   𝐵,𝑞,𝑟,𝑥   𝐿,𝑞,𝑟,𝑥   𝑈,𝑞,𝑟,𝑥   𝜑,𝑞,𝑟,𝑥

Proof of Theorem dedekindicc
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dedekindicc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 dedekindicc.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 dedekindicc.lss . . . . 5 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
4 dedekindicc.uss . . . . 5 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
5 dedekindicc.lm . . . . 5 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
6 dedekindicc.um . . . . 5 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
7 dedekindicc.lr . . . . 5 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
8 dedekindicc.ur . . . . 5 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
9 dedekindicc.disj . . . . 5 (𝜑 → (𝐿𝑈) = ∅)
10 dedekindicc.loc . . . . 5 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
11 dedekindicc.ab . . . . 5 (𝜑𝐴 < 𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dedekindicclemicc 13777 . . . 4 (𝜑 → ∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
13 df-reu 2462 . . . 4 (∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ ∃!𝑥(𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
1412, 13sylib 122 . . 3 (𝜑 → ∃!𝑥(𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
15 breq1 4003 . . . . . . . . . 10 (𝑞 = 𝑎 → (𝑞 < 𝑥𝑎 < 𝑥))
1615cbvralv 2703 . . . . . . . . 9 (∀𝑞𝐿 𝑞 < 𝑥 ↔ ∀𝑎𝐿 𝑎 < 𝑥)
17 breq2 4004 . . . . . . . . . 10 (𝑟 = 𝑏 → (𝑥 < 𝑟𝑥 < 𝑏))
1817cbvralv 2703 . . . . . . . . 9 (∀𝑟𝑈 𝑥 < 𝑟 ↔ ∀𝑏𝑈 𝑥 < 𝑏)
1916, 18anbi12i 460 . . . . . . . 8 ((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))
2019anbi2i 457 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ↔ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏)))
21 iccssre 9942 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
221, 2, 21syl2anc 411 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2322sselda 3155 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2423adantrr 479 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝑥 ∈ ℝ)
255adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
261ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝐴 ∈ ℝ)
27 simpll 527 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝜑)
28 simprl 529 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝑞 ∈ (𝐴[,]𝐵))
2922sseld 3154 . . . . . . . . . . 11 (𝜑 → (𝑞 ∈ (𝐴[,]𝐵) → 𝑞 ∈ ℝ))
3027, 28, 29sylc 62 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝑞 ∈ ℝ)
3124adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝑥 ∈ ℝ)
321rexrd 7997 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
3332ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝐴 ∈ ℝ*)
342rexrd 7997 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
3534ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝐵 ∈ ℝ*)
36 iccgelb 9919 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑞 ∈ (𝐴[,]𝐵)) → 𝐴𝑞)
3733, 35, 28, 36syl3anc 1238 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝐴𝑞)
38 breq1 4003 . . . . . . . . . . 11 (𝑎 = 𝑞 → (𝑎 < 𝑥𝑞 < 𝑥))
39 simprrl 539 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → ∀𝑎𝐿 𝑎 < 𝑥)
4039adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → ∀𝑎𝐿 𝑎 < 𝑥)
41 simprr 531 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝑞𝐿)
4238, 40, 41rspcdva 2846 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝑞 < 𝑥)
4326, 30, 31, 37, 42lelttrd 8072 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝐴 < 𝑥)
4425, 43rexlimddv 2599 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝐴 < 𝑥)
456adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
4624adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑥 ∈ ℝ)
47 simpll 527 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝜑)
48 simprl 529 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑟 ∈ (𝐴[,]𝐵))
4922sseld 3154 . . . . . . . . . . 11 (𝜑 → (𝑟 ∈ (𝐴[,]𝐵) → 𝑟 ∈ ℝ))
5047, 48, 49sylc 62 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑟 ∈ ℝ)
512ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝐵 ∈ ℝ)
52 breq2 4004 . . . . . . . . . . 11 (𝑏 = 𝑟 → (𝑥 < 𝑏𝑥 < 𝑟))
53 simprrr 540 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → ∀𝑏𝑈 𝑥 < 𝑏)
5453adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → ∀𝑏𝑈 𝑥 < 𝑏)
55 simprr 531 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑟𝑈)
5652, 54, 55rspcdva 2846 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑥 < 𝑟)
5732ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝐴 ∈ ℝ*)
5834ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝐵 ∈ ℝ*)
59 iccleub 9918 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑟 ∈ (𝐴[,]𝐵)) → 𝑟𝐵)
6057, 58, 48, 59syl3anc 1238 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑟𝐵)
6146, 50, 51, 56, 60ltletrd 8370 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑥 < 𝐵)
6245, 61rexlimddv 2599 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝑥 < 𝐵)
6332adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝐴 ∈ ℝ*)
6434adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝐵 ∈ ℝ*)
65 elioo2 9908 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵)))
6663, 64, 65syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵)))
6724, 44, 62, 66mpbir3and 1180 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝑥 ∈ (𝐴(,)𝐵))
6820, 67sylan2b 287 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → 𝑥 ∈ (𝐴(,)𝐵))
69 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
7068, 69jca 306 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → (𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
71 ioossicc 9946 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7271sseli 3151 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
7372ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → 𝑥 ∈ (𝐴[,]𝐵))
74 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
7573, 74jca 306 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
7670, 75impbida 596 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ↔ (𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))))
7776eubidv 2034 . . 3 (𝜑 → (∃!𝑥(𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ↔ ∃!𝑥(𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))))
7814, 77mpbid 147 . 2 (𝜑 → ∃!𝑥(𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
79 df-reu 2462 . 2 (∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ ∃!𝑥(𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
8078, 79sylibr 134 1 (𝜑 → ∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  ∃!weu 2026  wcel 2148  wral 2455  wrex 2456  ∃!wreu 2457  cin 3128  wss 3129  c0 3422   class class class wbr 4000  (class class class)co 5869  cr 7801  *cxr 7981   < clt 7982  cle 7983  (,)cioo 9875  [,]cicc 9878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-pre-suploc 7923
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-ioo 9879  df-icc 9882  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  ivthinclemex  13787
  Copyright terms: Public domain W3C validator