ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicc GIF version

Theorem dedekindicc 13405
Description: A Dedekind cut identifies a unique real number. Similar to df-inp 7428 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindicc.ab (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
dedekindicc (𝜑 → ∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Distinct variable groups:   𝐴,𝑞,𝑟,𝑥   𝐵,𝑞,𝑟,𝑥   𝐿,𝑞,𝑟,𝑥   𝑈,𝑞,𝑟,𝑥   𝜑,𝑞,𝑟,𝑥

Proof of Theorem dedekindicc
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dedekindicc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 dedekindicc.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 dedekindicc.lss . . . . 5 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
4 dedekindicc.uss . . . . 5 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
5 dedekindicc.lm . . . . 5 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
6 dedekindicc.um . . . . 5 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
7 dedekindicc.lr . . . . 5 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
8 dedekindicc.ur . . . . 5 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
9 dedekindicc.disj . . . . 5 (𝜑 → (𝐿𝑈) = ∅)
10 dedekindicc.loc . . . . 5 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
11 dedekindicc.ab . . . . 5 (𝜑𝐴 < 𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dedekindicclemicc 13404 . . . 4 (𝜑 → ∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
13 df-reu 2455 . . . 4 (∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ ∃!𝑥(𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
1412, 13sylib 121 . . 3 (𝜑 → ∃!𝑥(𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
15 breq1 3992 . . . . . . . . . 10 (𝑞 = 𝑎 → (𝑞 < 𝑥𝑎 < 𝑥))
1615cbvralv 2696 . . . . . . . . 9 (∀𝑞𝐿 𝑞 < 𝑥 ↔ ∀𝑎𝐿 𝑎 < 𝑥)
17 breq2 3993 . . . . . . . . . 10 (𝑟 = 𝑏 → (𝑥 < 𝑟𝑥 < 𝑏))
1817cbvralv 2696 . . . . . . . . 9 (∀𝑟𝑈 𝑥 < 𝑟 ↔ ∀𝑏𝑈 𝑥 < 𝑏)
1916, 18anbi12i 457 . . . . . . . 8 ((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))
2019anbi2i 454 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ↔ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏)))
21 iccssre 9912 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
221, 2, 21syl2anc 409 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2322sselda 3147 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2423adantrr 476 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝑥 ∈ ℝ)
255adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
261ad2antrr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝐴 ∈ ℝ)
27 simpll 524 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝜑)
28 simprl 526 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝑞 ∈ (𝐴[,]𝐵))
2922sseld 3146 . . . . . . . . . . 11 (𝜑 → (𝑞 ∈ (𝐴[,]𝐵) → 𝑞 ∈ ℝ))
3027, 28, 29sylc 62 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝑞 ∈ ℝ)
3124adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝑥 ∈ ℝ)
321rexrd 7969 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
3332ad2antrr 485 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝐴 ∈ ℝ*)
342rexrd 7969 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
3534ad2antrr 485 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝐵 ∈ ℝ*)
36 iccgelb 9889 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑞 ∈ (𝐴[,]𝐵)) → 𝐴𝑞)
3733, 35, 28, 36syl3anc 1233 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝐴𝑞)
38 breq1 3992 . . . . . . . . . . 11 (𝑎 = 𝑞 → (𝑎 < 𝑥𝑞 < 𝑥))
39 simprrl 534 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → ∀𝑎𝐿 𝑎 < 𝑥)
4039adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → ∀𝑎𝐿 𝑎 < 𝑥)
41 simprr 527 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝑞𝐿)
4238, 40, 41rspcdva 2839 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝑞 < 𝑥)
4326, 30, 31, 37, 42lelttrd 8044 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑞𝐿)) → 𝐴 < 𝑥)
4425, 43rexlimddv 2592 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝐴 < 𝑥)
456adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
4624adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑥 ∈ ℝ)
47 simpll 524 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝜑)
48 simprl 526 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑟 ∈ (𝐴[,]𝐵))
4922sseld 3146 . . . . . . . . . . 11 (𝜑 → (𝑟 ∈ (𝐴[,]𝐵) → 𝑟 ∈ ℝ))
5047, 48, 49sylc 62 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑟 ∈ ℝ)
512ad2antrr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝐵 ∈ ℝ)
52 breq2 3993 . . . . . . . . . . 11 (𝑏 = 𝑟 → (𝑥 < 𝑏𝑥 < 𝑟))
53 simprrr 535 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → ∀𝑏𝑈 𝑥 < 𝑏)
5453adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → ∀𝑏𝑈 𝑥 < 𝑏)
55 simprr 527 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑟𝑈)
5652, 54, 55rspcdva 2839 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑥 < 𝑟)
5732ad2antrr 485 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝐴 ∈ ℝ*)
5834ad2antrr 485 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝐵 ∈ ℝ*)
59 iccleub 9888 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑟 ∈ (𝐴[,]𝐵)) → 𝑟𝐵)
6057, 58, 48, 59syl3anc 1233 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑟𝐵)
6146, 50, 51, 56, 60ltletrd 8342 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) ∧ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑟𝑈)) → 𝑥 < 𝐵)
6245, 61rexlimddv 2592 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝑥 < 𝐵)
6332adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝐴 ∈ ℝ*)
6434adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝐵 ∈ ℝ*)
65 elioo2 9878 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵)))
6663, 64, 65syl2anc 409 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < 𝐵)))
6724, 44, 62, 66mpbir3and 1175 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑎𝐿 𝑎 < 𝑥 ∧ ∀𝑏𝑈 𝑥 < 𝑏))) → 𝑥 ∈ (𝐴(,)𝐵))
6820, 67sylan2b 285 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → 𝑥 ∈ (𝐴(,)𝐵))
69 simprr 527 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
7068, 69jca 304 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → (𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
71 ioossicc 9916 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7271sseli 3143 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
7372ad2antrl 487 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → 𝑥 ∈ (𝐴[,]𝐵))
74 simprr 527 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
7573, 74jca 304 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → (𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
7670, 75impbida 591 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ↔ (𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))))
7776eubidv 2027 . . 3 (𝜑 → (∃!𝑥(𝑥 ∈ (𝐴[,]𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ↔ ∃!𝑥(𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))))
7814, 77mpbid 146 . 2 (𝜑 → ∃!𝑥(𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
79 df-reu 2455 . 2 (∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ ∃!𝑥(𝑥 ∈ (𝐴(,)𝐵) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
8078, 79sylibr 133 1 (𝜑 → ∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  ∃!weu 2019  wcel 2141  wral 2448  wrex 2449  ∃!wreu 2450  cin 3120  wss 3121  c0 3414   class class class wbr 3989  (class class class)co 5853  cr 7773  *cxr 7953   < clt 7954  cle 7955  (,)cioo 9845  [,]cicc 9848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-ioo 9849  df-icc 9852  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  ivthinclemex  13414
  Copyright terms: Public domain W3C validator