Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reuhypd | GIF version |
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.) |
Ref | Expression |
---|---|
reuhypd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) |
reuhypd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
Ref | Expression |
---|---|
reuhypd | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuhypd.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) | |
2 | elex 2741 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → 𝐵 ∈ V) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ V) |
4 | eueq 2901 | . . . 4 ⊢ (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵) | |
5 | 3, 4 | sylib 121 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 𝑦 = 𝐵) |
6 | eleq1 2233 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
7 | 1, 6 | syl5ibrcom 156 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 → 𝑦 ∈ 𝐶)) |
8 | 7 | pm4.71rd 392 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 ↔ (𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵))) |
9 | reuhypd.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) | |
10 | 9 | 3expa 1198 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
11 | 10 | pm5.32da 449 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) ↔ (𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵))) |
12 | 8, 11 | bitr4d 190 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴))) |
13 | 12 | eubidv 2027 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (∃!𝑦 𝑦 = 𝐵 ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴))) |
14 | 5, 13 | mpbid 146 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) |
15 | df-reu 2455 | . 2 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) | |
16 | 14, 15 | sylibr 133 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∃!weu 2019 ∈ wcel 2141 ∃!wreu 2450 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-reu 2455 df-v 2732 |
This theorem is referenced by: reuhyp 4457 |
Copyright terms: Public domain | W3C validator |