ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuhypd GIF version

Theorem reuhypd 4330
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
reuhypd.1 ((𝜑𝑥𝐶) → 𝐵𝐶)
reuhypd.2 ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
Assertion
Ref Expression
reuhypd ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
Distinct variable groups:   𝜑,𝑦   𝑦,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem reuhypd
StepHypRef Expression
1 reuhypd.1 . . . . 5 ((𝜑𝑥𝐶) → 𝐵𝐶)
2 elex 2652 . . . . 5 (𝐵𝐶𝐵 ∈ V)
31, 2syl 14 . . . 4 ((𝜑𝑥𝐶) → 𝐵 ∈ V)
4 eueq 2808 . . . 4 (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵)
53, 4sylib 121 . . 3 ((𝜑𝑥𝐶) → ∃!𝑦 𝑦 = 𝐵)
6 eleq1 2162 . . . . . . 7 (𝑦 = 𝐵 → (𝑦𝐶𝐵𝐶))
71, 6syl5ibrcom 156 . . . . . 6 ((𝜑𝑥𝐶) → (𝑦 = 𝐵𝑦𝐶))
87pm4.71rd 389 . . . . 5 ((𝜑𝑥𝐶) → (𝑦 = 𝐵 ↔ (𝑦𝐶𝑦 = 𝐵)))
9 reuhypd.2 . . . . . . 7 ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
1093expa 1149 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
1110pm5.32da 443 . . . . 5 ((𝜑𝑥𝐶) → ((𝑦𝐶𝑥 = 𝐴) ↔ (𝑦𝐶𝑦 = 𝐵)))
128, 11bitr4d 190 . . . 4 ((𝜑𝑥𝐶) → (𝑦 = 𝐵 ↔ (𝑦𝐶𝑥 = 𝐴)))
1312eubidv 1968 . . 3 ((𝜑𝑥𝐶) → (∃!𝑦 𝑦 = 𝐵 ↔ ∃!𝑦(𝑦𝐶𝑥 = 𝐴)))
145, 13mpbid 146 . 2 ((𝜑𝑥𝐶) → ∃!𝑦(𝑦𝐶𝑥 = 𝐴))
15 df-reu 2382 . 2 (∃!𝑦𝐶 𝑥 = 𝐴 ↔ ∃!𝑦(𝑦𝐶𝑥 = 𝐴))
1614, 15sylibr 133 1 ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 930   = wceq 1299  wcel 1448  ∃!weu 1960  ∃!wreu 2377  Vcvv 2641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-reu 2382  df-v 2643
This theorem is referenced by:  reuhyp  4331
  Copyright terms: Public domain W3C validator