Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reuhypd | GIF version |
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.) |
Ref | Expression |
---|---|
reuhypd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) |
reuhypd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
Ref | Expression |
---|---|
reuhypd | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuhypd.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) | |
2 | elex 2746 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → 𝐵 ∈ V) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ V) |
4 | eueq 2906 | . . . 4 ⊢ (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵) | |
5 | 3, 4 | sylib 122 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 𝑦 = 𝐵) |
6 | eleq1 2238 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
7 | 1, 6 | syl5ibrcom 157 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 → 𝑦 ∈ 𝐶)) |
8 | 7 | pm4.71rd 394 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 ↔ (𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵))) |
9 | reuhypd.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) | |
10 | 9 | 3expa 1203 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
11 | 10 | pm5.32da 452 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) ↔ (𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵))) |
12 | 8, 11 | bitr4d 191 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴))) |
13 | 12 | eubidv 2032 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (∃!𝑦 𝑦 = 𝐵 ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴))) |
14 | 5, 13 | mpbid 147 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) |
15 | df-reu 2460 | . 2 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) | |
16 | 14, 15 | sylibr 134 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∃!weu 2024 ∈ wcel 2146 ∃!wreu 2455 Vcvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-reu 2460 df-v 2737 |
This theorem is referenced by: reuhyp 4466 |
Copyright terms: Public domain | W3C validator |