ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuhypd GIF version

Theorem reuhypd 4465
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
reuhypd.1 ((𝜑𝑥𝐶) → 𝐵𝐶)
reuhypd.2 ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
Assertion
Ref Expression
reuhypd ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
Distinct variable groups:   𝜑,𝑦   𝑦,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem reuhypd
StepHypRef Expression
1 reuhypd.1 . . . . 5 ((𝜑𝑥𝐶) → 𝐵𝐶)
2 elex 2746 . . . . 5 (𝐵𝐶𝐵 ∈ V)
31, 2syl 14 . . . 4 ((𝜑𝑥𝐶) → 𝐵 ∈ V)
4 eueq 2906 . . . 4 (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵)
53, 4sylib 122 . . 3 ((𝜑𝑥𝐶) → ∃!𝑦 𝑦 = 𝐵)
6 eleq1 2238 . . . . . . 7 (𝑦 = 𝐵 → (𝑦𝐶𝐵𝐶))
71, 6syl5ibrcom 157 . . . . . 6 ((𝜑𝑥𝐶) → (𝑦 = 𝐵𝑦𝐶))
87pm4.71rd 394 . . . . 5 ((𝜑𝑥𝐶) → (𝑦 = 𝐵 ↔ (𝑦𝐶𝑦 = 𝐵)))
9 reuhypd.2 . . . . . . 7 ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
1093expa 1203 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
1110pm5.32da 452 . . . . 5 ((𝜑𝑥𝐶) → ((𝑦𝐶𝑥 = 𝐴) ↔ (𝑦𝐶𝑦 = 𝐵)))
128, 11bitr4d 191 . . . 4 ((𝜑𝑥𝐶) → (𝑦 = 𝐵 ↔ (𝑦𝐶𝑥 = 𝐴)))
1312eubidv 2032 . . 3 ((𝜑𝑥𝐶) → (∃!𝑦 𝑦 = 𝐵 ↔ ∃!𝑦(𝑦𝐶𝑥 = 𝐴)))
145, 13mpbid 147 . 2 ((𝜑𝑥𝐶) → ∃!𝑦(𝑦𝐶𝑥 = 𝐴))
15 df-reu 2460 . 2 (∃!𝑦𝐶 𝑥 = 𝐴 ↔ ∃!𝑦(𝑦𝐶𝑥 = 𝐴))
1614, 15sylibr 134 1 ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  ∃!weu 2024  wcel 2146  ∃!wreu 2455  Vcvv 2735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-reu 2460  df-v 2737
This theorem is referenced by:  reuhyp  4466
  Copyright terms: Public domain W3C validator