![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reuhypd | GIF version |
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.) |
Ref | Expression |
---|---|
reuhypd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) |
reuhypd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
Ref | Expression |
---|---|
reuhypd | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuhypd.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) | |
2 | elex 2763 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → 𝐵 ∈ V) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ V) |
4 | eueq 2923 | . . . 4 ⊢ (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵) | |
5 | 3, 4 | sylib 122 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 𝑦 = 𝐵) |
6 | eleq1 2252 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
7 | 1, 6 | syl5ibrcom 157 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 → 𝑦 ∈ 𝐶)) |
8 | 7 | pm4.71rd 394 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 ↔ (𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵))) |
9 | reuhypd.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) | |
10 | 9 | 3expa 1205 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
11 | 10 | pm5.32da 452 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) ↔ (𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵))) |
12 | 8, 11 | bitr4d 191 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴))) |
13 | 12 | eubidv 2046 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (∃!𝑦 𝑦 = 𝐵 ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴))) |
14 | 5, 13 | mpbid 147 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) |
15 | df-reu 2475 | . 2 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) | |
16 | 14, 15 | sylibr 134 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃!weu 2038 ∈ wcel 2160 ∃!wreu 2470 Vcvv 2752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-reu 2475 df-v 2754 |
This theorem is referenced by: reuhyp 4490 |
Copyright terms: Public domain | W3C validator |