| Step | Hyp | Ref
 | Expression | 
| 1 |   | mptexg 5787 | 
. . . 4
⊢ (𝐴 ∈ 𝐷 → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ V) | 
| 2 |   | eueq 2935 | 
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ V ↔ ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) | 
| 3 | 1, 2 | sylib 122 | 
. . 3
⊢ (𝐴 ∈ 𝐷 → ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) | 
| 4 | 3 | 3ad2ant1 1020 | 
. 2
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) | 
| 5 |   | ffn 5407 | 
. . . . . . . 8
⊢ (ℎ:𝐴⟶(𝐵 × 𝐶) → ℎ Fn 𝐴) | 
| 6 | 5 | 3ad2ant1 1020 | 
. . . . . . 7
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ℎ Fn 𝐴) | 
| 7 | 6 | adantl 277 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → ℎ Fn 𝐴) | 
| 8 |   | ffvelcdm 5695 | 
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | 
| 9 |   | ffvelcdm 5695 | 
. . . . . . . . . . . . 13
⊢ ((𝐺:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐶) | 
| 10 |   | opelxpi 4695 | 
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐺‘𝑥) ∈ 𝐶) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) | 
| 11 | 8, 9, 10 | syl2an 289 | 
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ (𝐺:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴)) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) | 
| 12 | 11 | anandirs 593 | 
. . . . . . . . . . 11
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑥 ∈ 𝐴) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) | 
| 13 | 12 | ralrimiva 2570 | 
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∀𝑥 ∈ 𝐴 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) | 
| 14 | 13 | 3adant1 1017 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∀𝑥 ∈ 𝐴 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) | 
| 15 |   | eqid 2196 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) | 
| 16 | 15 | fmpt 5712 | 
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶)) | 
| 17 | 14, 16 | sylib 122 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶)) | 
| 18 | 17 | ffnd 5408 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴) | 
| 19 | 18 | adantr 276 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴) | 
| 20 |   | xpss 4771 | 
. . . . . . . . . . 11
⊢ (𝐵 × 𝐶) ⊆ (V × V) | 
| 21 |   | ffvelcdm 5695 | 
. . . . . . . . . . 11
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (𝐵 × 𝐶)) | 
| 22 | 20, 21 | sselid 3181 | 
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (V × V)) | 
| 23 | 22 | 3ad2antl1 1161 | 
. . . . . . . . 9
⊢ (((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (V × V)) | 
| 24 | 23 | adantll 476 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (V × V)) | 
| 25 |   | fveq1 5557 | 
. . . . . . . . . . . 12
⊢ (𝐹 = (𝑃 ∘ ℎ) → (𝐹‘𝑧) = ((𝑃 ∘ ℎ)‘𝑧)) | 
| 26 |   | upxp.1 | 
. . . . . . . . . . . . . 14
⊢ 𝑃 = (1st ↾
(𝐵 × 𝐶)) | 
| 27 | 26 | coeq1i 4825 | 
. . . . . . . . . . . . 13
⊢ (𝑃 ∘ ℎ) = ((1st ↾ (𝐵 × 𝐶)) ∘ ℎ) | 
| 28 | 27 | fveq1i 5559 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∘ ℎ)‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) | 
| 29 | 25, 28 | eqtrdi 2245 | 
. . . . . . . . . . 11
⊢ (𝐹 = (𝑃 ∘ ℎ) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) | 
| 30 | 29 | 3ad2ant2 1021 | 
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) | 
| 31 | 30 | ad2antlr 489 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) | 
| 32 |   | simpr1 1005 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → ℎ:𝐴⟶(𝐵 × 𝐶)) | 
| 33 |   | fvco3 5632 | 
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) | 
| 34 | 32, 33 | sylan 283 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) | 
| 35 | 21 | 3ad2antl1 1161 | 
. . . . . . . . . . 11
⊢ (((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (𝐵 × 𝐶)) | 
| 36 | 35 | adantll 476 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (𝐵 × 𝐶)) | 
| 37 | 36 | fvresd 5583 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧)) = (1st ‘(ℎ‘𝑧))) | 
| 38 | 31, 34, 37 | 3eqtrrd 2234 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (1st ‘(ℎ‘𝑧)) = (𝐹‘𝑧)) | 
| 39 |   | fveq1 5557 | 
. . . . . . . . . . . 12
⊢ (𝐺 = (𝑄 ∘ ℎ) → (𝐺‘𝑧) = ((𝑄 ∘ ℎ)‘𝑧)) | 
| 40 |   | upxp.2 | 
. . . . . . . . . . . . . 14
⊢ 𝑄 = (2nd ↾
(𝐵 × 𝐶)) | 
| 41 | 40 | coeq1i 4825 | 
. . . . . . . . . . . . 13
⊢ (𝑄 ∘ ℎ) = ((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ) | 
| 42 | 41 | fveq1i 5559 | 
. . . . . . . . . . . 12
⊢ ((𝑄 ∘ ℎ)‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) | 
| 43 | 39, 42 | eqtrdi 2245 | 
. . . . . . . . . . 11
⊢ (𝐺 = (𝑄 ∘ ℎ) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) | 
| 44 | 43 | 3ad2ant3 1022 | 
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) | 
| 45 | 44 | ad2antlr 489 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) | 
| 46 |   | fvco3 5632 | 
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) | 
| 47 | 32, 46 | sylan 283 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) | 
| 48 | 36 | fvresd 5583 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧)) = (2nd ‘(ℎ‘𝑧))) | 
| 49 | 45, 47, 48 | 3eqtrrd 2234 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (2nd ‘(ℎ‘𝑧)) = (𝐺‘𝑧)) | 
| 50 |   | eqopi 6230 | 
. . . . . . . 8
⊢ (((ℎ‘𝑧) ∈ (V × V) ∧ ((1st
‘(ℎ‘𝑧)) = (𝐹‘𝑧) ∧ (2nd ‘(ℎ‘𝑧)) = (𝐺‘𝑧))) → (ℎ‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) | 
| 51 | 24, 38, 49, 50 | syl12anc 1247 | 
. . . . . . 7
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) | 
| 52 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | 
| 53 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐺‘𝑥) = (𝐺‘𝑧)) | 
| 54 | 52, 53 | opeq12d 3816 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) | 
| 55 |   | simpr 110 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | 
| 56 | 51, 36 | eqeltrrd 2274 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) | 
| 57 | 15, 54, 55, 56 | fvmptd3 5655 | 
. . . . . . 7
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) | 
| 58 | 51, 57 | eqtr4d 2232 | 
. . . . . 6
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) | 
| 59 | 7, 19, 58 | eqfnfvd 5662 | 
. . . . 5
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) | 
| 60 | 59 | ex 115 | 
. . . 4
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 61 |   | ffn 5407 | 
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | 
| 62 | 61 | 3ad2ant2 1021 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐹 Fn 𝐴) | 
| 63 |   | fo1st 6215 | 
. . . . . . . . . . 11
⊢
1st :V–onto→V | 
| 64 |   | fofn 5482 | 
. . . . . . . . . . 11
⊢
(1st :V–onto→V → 1st Fn V) | 
| 65 | 63, 64 | ax-mp 5 | 
. . . . . . . . . 10
⊢
1st Fn V | 
| 66 |   | ssv 3205 | 
. . . . . . . . . 10
⊢ (𝐵 × 𝐶) ⊆ V | 
| 67 |   | fnssres 5371 | 
. . . . . . . . . 10
⊢
((1st Fn V ∧ (𝐵 × 𝐶) ⊆ V) → (1st ↾
(𝐵 × 𝐶)) Fn (𝐵 × 𝐶)) | 
| 68 | 65, 66, 67 | mp2an 426 | 
. . . . . . . . 9
⊢
(1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) | 
| 69 | 17 | frnd 5417 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ran (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝐵 × 𝐶)) | 
| 70 |   | fnco 5366 | 
. . . . . . . . 9
⊢
(((1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) ∧ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝐵 × 𝐶)) → ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) | 
| 71 | 68, 18, 69, 70 | mp3an2i 1353 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) | 
| 72 |   | fvco3 5632 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) | 
| 73 | 17, 72 | sylan 283 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) | 
| 74 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | 
| 75 |   | simpl2 1003 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 𝐹:𝐴⟶𝐵) | 
| 76 | 75, 74 | ffvelcdmd 5698 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) | 
| 77 |   | simpl3 1004 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 𝐺:𝐴⟶𝐶) | 
| 78 | 77, 74 | ffvelcdmd 5698 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ 𝐶) | 
| 79 | 76, 78 | opelxpd 4696 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) | 
| 80 | 15, 54, 74, 79 | fvmptd3 5655 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) | 
| 81 | 80 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((1st ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) | 
| 82 |   | ffvelcdm 5695 | 
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) | 
| 83 |   | ffvelcdm 5695 | 
. . . . . . . . . . . . . 14
⊢ ((𝐺:𝐴⟶𝐶 ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ 𝐶) | 
| 84 |   | opelxpi 4695 | 
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑧) ∈ 𝐵 ∧ (𝐺‘𝑧) ∈ 𝐶) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) | 
| 85 | 82, 83, 84 | syl2an 289 | 
. . . . . . . . . . . . 13
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) ∧ (𝐺:𝐴⟶𝐶 ∧ 𝑧 ∈ 𝐴)) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) | 
| 86 | 85 | anandirs 593 | 
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) | 
| 87 | 86 | 3adantl1 1155 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) | 
| 88 | 87 | fvresd 5583 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (1st
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) | 
| 89 |   | op1stg 6208 | 
. . . . . . . . . . 11
⊢ (((𝐹‘𝑧) ∈ 𝐵 ∧ (𝐺‘𝑧) ∈ 𝐶) → (1st ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) | 
| 90 | 76, 78, 89 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (1st ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) | 
| 91 | 88, 90 | eqtrd 2229 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) | 
| 92 | 73, 81, 91 | 3eqtrrd 2234 | 
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) | 
| 93 | 62, 71, 92 | eqfnfvd 5662 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐹 = ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 94 | 26 | coeq1i 4825 | 
. . . . . . 7
⊢ (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) | 
| 95 | 93, 94 | eqtr4di 2247 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 96 |   | ffn 5407 | 
. . . . . . . . 9
⊢ (𝐺:𝐴⟶𝐶 → 𝐺 Fn 𝐴) | 
| 97 | 96 | 3ad2ant3 1022 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐺 Fn 𝐴) | 
| 98 |   | fo2nd 6216 | 
. . . . . . . . . . 11
⊢
2nd :V–onto→V | 
| 99 |   | fofn 5482 | 
. . . . . . . . . . 11
⊢
(2nd :V–onto→V → 2nd Fn V) | 
| 100 | 98, 99 | ax-mp 5 | 
. . . . . . . . . 10
⊢
2nd Fn V | 
| 101 |   | fnssres 5371 | 
. . . . . . . . . 10
⊢
((2nd Fn V ∧ (𝐵 × 𝐶) ⊆ V) → (2nd ↾
(𝐵 × 𝐶)) Fn (𝐵 × 𝐶)) | 
| 102 | 100, 66, 101 | mp2an 426 | 
. . . . . . . . 9
⊢
(2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) | 
| 103 |   | fnco 5366 | 
. . . . . . . . 9
⊢
(((2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) ∧ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝐵 × 𝐶)) → ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) | 
| 104 | 102, 18, 69, 103 | mp3an2i 1353 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) | 
| 105 |   | fvco3 5632 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) | 
| 106 | 17, 105 | sylan 283 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) | 
| 107 | 80 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((2nd ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) | 
| 108 | 87 | fvresd 5583 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (2nd
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) | 
| 109 |   | op2ndg 6209 | 
. . . . . . . . . . 11
⊢ (((𝐹‘𝑧) ∈ 𝐵 ∧ (𝐺‘𝑧) ∈ 𝐶) → (2nd ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) | 
| 110 | 76, 78, 109 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (2nd ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) | 
| 111 | 108, 110 | eqtrd 2229 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) | 
| 112 | 106, 107,
111 | 3eqtrrd 2234 | 
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) | 
| 113 | 97, 104, 112 | eqfnfvd 5662 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐺 = ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 114 | 40 | coeq1i 4825 | 
. . . . . . 7
⊢ (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) | 
| 115 | 113, 114 | eqtr4di 2247 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 116 | 17, 95, 115 | 3jca 1179 | 
. . . . 5
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) | 
| 117 |   | feq1 5390 | 
. . . . . 6
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (ℎ:𝐴⟶(𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶))) | 
| 118 |   | coeq2 4824 | 
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑃 ∘ ℎ) = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 119 | 118 | eqeq2d 2208 | 
. . . . . 6
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐹 = (𝑃 ∘ ℎ) ↔ 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) | 
| 120 |   | coeq2 4824 | 
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑄 ∘ ℎ) = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 121 | 120 | eqeq2d 2208 | 
. . . . . 6
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐺 = (𝑄 ∘ ℎ) ↔ 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) | 
| 122 | 117, 119,
121 | 3anbi123d 1323 | 
. . . . 5
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))))) | 
| 123 | 116, 122 | syl5ibrcom 157 | 
. . . 4
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) | 
| 124 | 60, 123 | impbid 129 | 
. . 3
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 125 | 124 | eubidv 2053 | 
. 2
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (∃!ℎ(ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 126 | 4, 125 | mpbird 167 | 
1
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∃!ℎ(ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |