Step | Hyp | Ref
| Expression |
1 | | mptexg 5710 |
. . . 4
⊢ (𝐴 ∈ 𝐷 → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ V) |
2 | | eueq 2897 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ V ↔ ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
3 | 1, 2 | sylib 121 |
. . 3
⊢ (𝐴 ∈ 𝐷 → ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
4 | 3 | 3ad2ant1 1008 |
. 2
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
5 | | ffn 5337 |
. . . . . . . 8
⊢ (ℎ:𝐴⟶(𝐵 × 𝐶) → ℎ Fn 𝐴) |
6 | 5 | 3ad2ant1 1008 |
. . . . . . 7
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ℎ Fn 𝐴) |
7 | 6 | adantl 275 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → ℎ Fn 𝐴) |
8 | | ffvelrn 5618 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
9 | | ffvelrn 5618 |
. . . . . . . . . . . . 13
⊢ ((𝐺:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐶) |
10 | | opelxpi 4636 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐺‘𝑥) ∈ 𝐶) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
11 | 8, 9, 10 | syl2an 287 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ (𝐺:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴)) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
12 | 11 | anandirs 583 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑥 ∈ 𝐴) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
13 | 12 | ralrimiva 2539 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∀𝑥 ∈ 𝐴 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
14 | 13 | 3adant1 1005 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∀𝑥 ∈ 𝐴 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
15 | | eqid 2165 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
16 | 15 | fmpt 5635 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶)) |
17 | 14, 16 | sylib 121 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶)) |
18 | 17 | ffnd 5338 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴) |
19 | 18 | adantr 274 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴) |
20 | | xpss 4712 |
. . . . . . . . . . 11
⊢ (𝐵 × 𝐶) ⊆ (V × V) |
21 | | ffvelrn 5618 |
. . . . . . . . . . 11
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (𝐵 × 𝐶)) |
22 | 20, 21 | sselid 3140 |
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (V × V)) |
23 | 22 | 3ad2antl1 1149 |
. . . . . . . . 9
⊢ (((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (V × V)) |
24 | 23 | adantll 468 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (V × V)) |
25 | | fveq1 5485 |
. . . . . . . . . . . 12
⊢ (𝐹 = (𝑃 ∘ ℎ) → (𝐹‘𝑧) = ((𝑃 ∘ ℎ)‘𝑧)) |
26 | | upxp.1 |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (1st ↾
(𝐵 × 𝐶)) |
27 | 26 | coeq1i 4763 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∘ ℎ) = ((1st ↾ (𝐵 × 𝐶)) ∘ ℎ) |
28 | 27 | fveq1i 5487 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∘ ℎ)‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) |
29 | 25, 28 | eqtrdi 2215 |
. . . . . . . . . . 11
⊢ (𝐹 = (𝑃 ∘ ℎ) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
30 | 29 | 3ad2ant2 1009 |
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
31 | 30 | ad2antlr 481 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
32 | | simpr1 993 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → ℎ:𝐴⟶(𝐵 × 𝐶)) |
33 | | fvco3 5557 |
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) |
34 | 32, 33 | sylan 281 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) |
35 | 21 | 3ad2antl1 1149 |
. . . . . . . . . . 11
⊢ (((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (𝐵 × 𝐶)) |
36 | 35 | adantll 468 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (𝐵 × 𝐶)) |
37 | 36 | fvresd 5511 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧)) = (1st ‘(ℎ‘𝑧))) |
38 | 31, 34, 37 | 3eqtrrd 2203 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (1st ‘(ℎ‘𝑧)) = (𝐹‘𝑧)) |
39 | | fveq1 5485 |
. . . . . . . . . . . 12
⊢ (𝐺 = (𝑄 ∘ ℎ) → (𝐺‘𝑧) = ((𝑄 ∘ ℎ)‘𝑧)) |
40 | | upxp.2 |
. . . . . . . . . . . . . 14
⊢ 𝑄 = (2nd ↾
(𝐵 × 𝐶)) |
41 | 40 | coeq1i 4763 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∘ ℎ) = ((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ) |
42 | 41 | fveq1i 5487 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∘ ℎ)‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) |
43 | 39, 42 | eqtrdi 2215 |
. . . . . . . . . . 11
⊢ (𝐺 = (𝑄 ∘ ℎ) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
44 | 43 | 3ad2ant3 1010 |
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
45 | 44 | ad2antlr 481 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
46 | | fvco3 5557 |
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) |
47 | 32, 46 | sylan 281 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) |
48 | 36 | fvresd 5511 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧)) = (2nd ‘(ℎ‘𝑧))) |
49 | 45, 47, 48 | 3eqtrrd 2203 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (2nd ‘(ℎ‘𝑧)) = (𝐺‘𝑧)) |
50 | | eqopi 6140 |
. . . . . . . 8
⊢ (((ℎ‘𝑧) ∈ (V × V) ∧ ((1st
‘(ℎ‘𝑧)) = (𝐹‘𝑧) ∧ (2nd ‘(ℎ‘𝑧)) = (𝐺‘𝑧))) → (ℎ‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
51 | 24, 38, 49, 50 | syl12anc 1226 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
52 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
53 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐺‘𝑥) = (𝐺‘𝑧)) |
54 | 52, 53 | opeq12d 3766 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
55 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
56 | 51, 36 | eqeltrrd 2244 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) |
57 | 15, 54, 55, 56 | fvmptd3 5579 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
58 | 51, 57 | eqtr4d 2201 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) |
59 | 7, 19, 58 | eqfnfvd 5586 |
. . . . 5
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
60 | 59 | ex 114 |
. . . 4
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
61 | | ffn 5337 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
62 | 61 | 3ad2ant2 1009 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐹 Fn 𝐴) |
63 | | fo1st 6125 |
. . . . . . . . . . 11
⊢
1st :V–onto→V |
64 | | fofn 5412 |
. . . . . . . . . . 11
⊢
(1st :V–onto→V → 1st Fn V) |
65 | 63, 64 | ax-mp 5 |
. . . . . . . . . 10
⊢
1st Fn V |
66 | | ssv 3164 |
. . . . . . . . . 10
⊢ (𝐵 × 𝐶) ⊆ V |
67 | | fnssres 5301 |
. . . . . . . . . 10
⊢
((1st Fn V ∧ (𝐵 × 𝐶) ⊆ V) → (1st ↾
(𝐵 × 𝐶)) Fn (𝐵 × 𝐶)) |
68 | 65, 66, 67 | mp2an 423 |
. . . . . . . . 9
⊢
(1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) |
69 | 17 | frnd 5347 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ran (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝐵 × 𝐶)) |
70 | | fnco 5296 |
. . . . . . . . 9
⊢
(((1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) ∧ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝐵 × 𝐶)) → ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) |
71 | 68, 18, 69, 70 | mp3an2i 1332 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) |
72 | | fvco3 5557 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
73 | 17, 72 | sylan 281 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
74 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
75 | | simpl2 991 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 𝐹:𝐴⟶𝐵) |
76 | 75, 74 | ffvelrnd 5621 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
77 | | simpl3 992 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 𝐺:𝐴⟶𝐶) |
78 | 77, 74 | ffvelrnd 5621 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ 𝐶) |
79 | 76, 78 | opelxpd 4637 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) |
80 | 15, 54, 74, 79 | fvmptd3 5579 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
81 | 80 | fveq2d 5490 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((1st ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
82 | | ffvelrn 5618 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
83 | | ffvelrn 5618 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:𝐴⟶𝐶 ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ 𝐶) |
84 | | opelxpi 4636 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑧) ∈ 𝐵 ∧ (𝐺‘𝑧) ∈ 𝐶) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) |
85 | 82, 83, 84 | syl2an 287 |
. . . . . . . . . . . . 13
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) ∧ (𝐺:𝐴⟶𝐶 ∧ 𝑧 ∈ 𝐴)) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) |
86 | 85 | anandirs 583 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) |
87 | 86 | 3adantl1 1143 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) |
88 | 87 | fvresd 5511 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (1st
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
89 | | op1stg 6118 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑧) ∈ 𝐵 ∧ (𝐺‘𝑧) ∈ 𝐶) → (1st ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) |
90 | 76, 78, 89 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (1st ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) |
91 | 88, 90 | eqtrd 2198 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) |
92 | 73, 81, 91 | 3eqtrrd 2203 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) |
93 | 62, 71, 92 | eqfnfvd 5586 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐹 = ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
94 | 26 | coeq1i 4763 |
. . . . . . 7
⊢ (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
95 | 93, 94 | eqtr4di 2217 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
96 | | ffn 5337 |
. . . . . . . . 9
⊢ (𝐺:𝐴⟶𝐶 → 𝐺 Fn 𝐴) |
97 | 96 | 3ad2ant3 1010 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐺 Fn 𝐴) |
98 | | fo2nd 6126 |
. . . . . . . . . . 11
⊢
2nd :V–onto→V |
99 | | fofn 5412 |
. . . . . . . . . . 11
⊢
(2nd :V–onto→V → 2nd Fn V) |
100 | 98, 99 | ax-mp 5 |
. . . . . . . . . 10
⊢
2nd Fn V |
101 | | fnssres 5301 |
. . . . . . . . . 10
⊢
((2nd Fn V ∧ (𝐵 × 𝐶) ⊆ V) → (2nd ↾
(𝐵 × 𝐶)) Fn (𝐵 × 𝐶)) |
102 | 100, 66, 101 | mp2an 423 |
. . . . . . . . 9
⊢
(2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) |
103 | | fnco 5296 |
. . . . . . . . 9
⊢
(((2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) ∧ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝐵 × 𝐶)) → ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) |
104 | 102, 18, 69, 103 | mp3an2i 1332 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) |
105 | | fvco3 5557 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
106 | 17, 105 | sylan 281 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
107 | 80 | fveq2d 5490 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((2nd ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
108 | 87 | fvresd 5511 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (2nd
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
109 | | op2ndg 6119 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑧) ∈ 𝐵 ∧ (𝐺‘𝑧) ∈ 𝐶) → (2nd ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) |
110 | 76, 78, 109 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (2nd ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) |
111 | 108, 110 | eqtrd 2198 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) |
112 | 106, 107,
111 | 3eqtrrd 2203 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) |
113 | 97, 104, 112 | eqfnfvd 5586 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐺 = ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
114 | 40 | coeq1i 4763 |
. . . . . . 7
⊢ (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
115 | 113, 114 | eqtr4di 2217 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
116 | 17, 95, 115 | 3jca 1167 |
. . . . 5
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) |
117 | | feq1 5320 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (ℎ:𝐴⟶(𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶))) |
118 | | coeq2 4762 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑃 ∘ ℎ) = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
119 | 118 | eqeq2d 2177 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐹 = (𝑃 ∘ ℎ) ↔ 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) |
120 | | coeq2 4762 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑄 ∘ ℎ) = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
121 | 120 | eqeq2d 2177 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐺 = (𝑄 ∘ ℎ) ↔ 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) |
122 | 117, 119,
121 | 3anbi123d 1302 |
. . . . 5
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))))) |
123 | 116, 122 | syl5ibrcom 156 |
. . . 4
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
124 | 60, 123 | impbid 128 |
. . 3
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
125 | 124 | eubidv 2022 |
. 2
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (∃!ℎ(ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
126 | 4, 125 | mpbird 166 |
1
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∃!ℎ(ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |