ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupickbi GIF version

Theorem eupickbi 2096
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
eupickbi (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜓)))

Proof of Theorem eupickbi
StepHypRef Expression
1 eupicka 2094 . . 3 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
21ex 114 . 2 (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓)))
3 hba1 1528 . . . . 5 (∀𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
4 ancl 316 . . . . . . 7 ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))
5 simpl 108 . . . . . . 7 ((𝜑𝜓) → 𝜑)
64, 5impbid1 141 . . . . . 6 ((𝜑𝜓) → (𝜑 ↔ (𝜑𝜓)))
76sps 1525 . . . . 5 (∀𝑥(𝜑𝜓) → (𝜑 ↔ (𝜑𝜓)))
83, 7eubidh 2020 . . . 4 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥(𝜑𝜓)))
9 euex 2044 . . . 4 (∃!𝑥(𝜑𝜓) → ∃𝑥(𝜑𝜓))
108, 9syl6bi 162 . . 3 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜑 → ∃𝑥(𝜑𝜓)))
1110com12 30 . 2 (∃!𝑥𝜑 → (∀𝑥(𝜑𝜓) → ∃𝑥(𝜑𝜓)))
122, 11impbid 128 1 (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wex 1480  ∃!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator