| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eupickbi | GIF version | ||
| Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| eupickbi | ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupicka 2125 | . . 3 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
| 3 | hba1 1554 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑥∀𝑥(𝜑 → 𝜓)) | |
| 4 | ancl 318 | . . . . . . 7 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 5 | simpl 109 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 6 | 4, 5 | impbid1 142 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → (𝜑 ↔ (𝜑 ∧ 𝜓))) |
| 7 | 6 | sps 1551 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 ↔ (𝜑 ∧ 𝜓))) |
| 8 | 3, 7 | eubidh 2051 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥(𝜑 ∧ 𝜓))) |
| 9 | euex 2075 | . . . 4 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | |
| 10 | 8, 9 | biimtrdi 163 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 11 | 10 | com12 30 | . 2 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
| 12 | 2, 11 | impbid 129 | 1 ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∃!weu 2045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |