ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupickbi GIF version

Theorem eupickbi 2030
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
eupickbi (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜓)))

Proof of Theorem eupickbi
StepHypRef Expression
1 eupicka 2028 . . 3 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
21ex 113 . 2 (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓)))
3 hba1 1478 . . . . 5 (∀𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
4 ancl 311 . . . . . . 7 ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))
5 simpl 107 . . . . . . 7 ((𝜑𝜓) → 𝜑)
64, 5impbid1 140 . . . . . 6 ((𝜑𝜓) → (𝜑 ↔ (𝜑𝜓)))
76sps 1475 . . . . 5 (∀𝑥(𝜑𝜓) → (𝜑 ↔ (𝜑𝜓)))
83, 7eubidh 1954 . . . 4 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥(𝜑𝜓)))
9 euex 1978 . . . 4 (∃!𝑥(𝜑𝜓) → ∃𝑥(𝜑𝜓))
108, 9syl6bi 161 . . 3 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜑 → ∃𝑥(𝜑𝜓)))
1110com12 30 . 2 (∃!𝑥𝜑 → (∀𝑥(𝜑𝜓) → ∃𝑥(𝜑𝜓)))
122, 11impbid 127 1 (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1287  wex 1426  ∃!weu 1948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator