ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupickbi GIF version

Theorem eupickbi 2127
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
eupickbi (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜓)))

Proof of Theorem eupickbi
StepHypRef Expression
1 eupicka 2125 . . 3 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
21ex 115 . 2 (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓)))
3 hba1 1554 . . . . 5 (∀𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
4 ancl 318 . . . . . . 7 ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))
5 simpl 109 . . . . . . 7 ((𝜑𝜓) → 𝜑)
64, 5impbid1 142 . . . . . 6 ((𝜑𝜓) → (𝜑 ↔ (𝜑𝜓)))
76sps 1551 . . . . 5 (∀𝑥(𝜑𝜓) → (𝜑 ↔ (𝜑𝜓)))
83, 7eubidh 2051 . . . 4 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥(𝜑𝜓)))
9 euex 2075 . . . 4 (∃!𝑥(𝜑𝜓) → ∃𝑥(𝜑𝜓))
108, 9biimtrdi 163 . . 3 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜑 → ∃𝑥(𝜑𝜓)))
1110com12 30 . 2 (∃!𝑥𝜑 → (∀𝑥(𝜑𝜓) → ∃𝑥(𝜑𝜓)))
122, 11impbid 129 1 (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wex 1506  ∃!weu 2045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator