![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eupickbi | GIF version |
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
eupickbi | ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupicka 2106 | . . 3 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) | |
2 | 1 | ex 115 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
3 | hba1 1540 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑥∀𝑥(𝜑 → 𝜓)) | |
4 | ancl 318 | . . . . . . 7 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜑 ∧ 𝜓))) | |
5 | simpl 109 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
6 | 4, 5 | impbid1 142 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → (𝜑 ↔ (𝜑 ∧ 𝜓))) |
7 | 6 | sps 1537 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 ↔ (𝜑 ∧ 𝜓))) |
8 | 3, 7 | eubidh 2032 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥(𝜑 ∧ 𝜓))) |
9 | euex 2056 | . . . 4 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | |
10 | 8, 9 | syl6bi 163 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
11 | 10 | com12 30 | . 2 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
12 | 2, 11 | impbid 129 | 1 ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 ∃wex 1492 ∃!weu 2026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |