ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcnv GIF version

Theorem fprodcnv 12011
Description: Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
Hypotheses
Ref Expression
fprodcnv.1 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
fprodcnv.2 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
fprodcnv.3 (𝜑𝐴 ∈ Fin)
fprodcnv.4 (𝜑 → Rel 𝐴)
fprodcnv.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodcnv (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝐵,𝑗,𝑘,𝑦   𝐶,𝑗,𝑘   𝑥,𝐷,𝑦   𝑗,𝑘,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑗,𝑘)

Proof of Theorem fprodcnv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3106 . . . 4 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
2 2ndexg 6267 . . . . . 6 (𝑦 ∈ V → (2nd𝑦) ∈ V)
32elv 2777 . . . . 5 (2nd𝑦) ∈ V
4 1stexg 6266 . . . . . 6 (𝑦 ∈ V → (1st𝑦) ∈ V)
54elv 2777 . . . . 5 (1st𝑦) ∈ V
6 vex 2776 . . . . . . . 8 𝑗 ∈ V
7 vex 2776 . . . . . . . 8 𝑘 ∈ V
86, 7opex 4281 . . . . . . 7 𝑗, 𝑘⟩ ∈ V
9 fprodcnv.1 . . . . . . 7 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
108, 9csbie 3143 . . . . . 6 𝑗, 𝑘⟩ / 𝑥𝐵 = 𝐷
11 opeq12 3827 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑗, 𝑘⟩ = ⟨(2nd𝑦), (1st𝑦)⟩)
1211csbeq1d 3104 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑗, 𝑘⟩ / 𝑥𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
1310, 12eqtr3id 2253 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
143, 5, 13csbie2 3147 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵
151, 14eqtr4di 2257 . . 3 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
16 fprodcnv.4 . . . 4 (𝜑 → Rel 𝐴)
17 fprodcnv.3 . . . 4 (𝜑𝐴 ∈ Fin)
18 relcnvfi 7058 . . . 4 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
1916, 17, 18syl2anc 411 . . 3 (𝜑𝐴 ∈ Fin)
20 relcnv 5069 . . . . 5 Rel 𝐴
21 cnvf1o 6324 . . . . 5 (Rel 𝐴 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
2220, 21ax-mp 5 . . . 4 (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴
23 dfrel2 5142 . . . . . 6 (Rel 𝐴𝐴 = 𝐴)
2416, 23sylib 122 . . . . 5 (𝜑𝐴 = 𝐴)
2524f1oeq3d 5531 . . . 4 (𝜑 → ((𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴 ↔ (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴))
2622, 25mpbii 148 . . 3 (𝜑 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
27 1st2nd 6280 . . . . . . 7 ((Rel 𝐴𝑦𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2820, 27mpan 424 . . . . . 6 (𝑦𝐴𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2928fveq2d 5593 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩))
3028eleq1d 2275 . . . . . . 7 (𝑦𝐴 → (𝑦𝐴 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴))
3130ibi 176 . . . . . 6 (𝑦𝐴 → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
32 sneq 3649 . . . . . . . . . 10 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
3332cnveqd 4862 . . . . . . . . 9 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
3433unieqd 3867 . . . . . . . 8 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
35 opswapg 5178 . . . . . . . . 9 (((1st𝑦) ∈ V ∧ (2nd𝑦) ∈ V) → {⟨(1st𝑦), (2nd𝑦)⟩} = ⟨(2nd𝑦), (1st𝑦)⟩)
365, 3, 35mp2an 426 . . . . . . . 8 {⟨(1st𝑦), (2nd𝑦)⟩} = ⟨(2nd𝑦), (1st𝑦)⟩
3734, 36eqtrdi 2255 . . . . . . 7 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = ⟨(2nd𝑦), (1st𝑦)⟩)
38 eqid 2206 . . . . . . 7 (𝑧𝐴 {𝑧}) = (𝑧𝐴 {𝑧})
393, 5opex 4281 . . . . . . 7 ⟨(2nd𝑦), (1st𝑦)⟩ ∈ V
4037, 38, 39fvmpt 5669 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4131, 40syl 14 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4229, 41eqtrd 2239 . . . 4 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
4342adantl 277 . . 3 ((𝜑𝑦𝐴) → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
44 fprodcnv.5 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4515, 19, 26, 43, 44fprodf1o 11974 . 2 (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
46 csbeq1a 3106 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
4728, 46syl 14 . . . 4 (𝑦𝐴𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
487, 6opex 4281 . . . . . . 7 𝑘, 𝑗⟩ ∈ V
49 fprodcnv.2 . . . . . . 7 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
5048, 49csbie 3143 . . . . . 6 𝑘, 𝑗⟩ / 𝑦𝐶 = 𝐷
51 opeq12 3827 . . . . . . . 8 ((𝑘 = (1st𝑦) ∧ 𝑗 = (2nd𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
5251ancoms 268 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
5352csbeq1d 3104 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑘, 𝑗⟩ / 𝑦𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
5450, 53eqtr3id 2253 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
553, 5, 54csbie2 3147 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶
5647, 55eqtr4di 2257 . . 3 (𝑦𝐴𝐶 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
5756prodeq2i 11948 . 2 𝑦 𝐴𝐶 = ∏𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷
5845, 57eqtr4di 2257 1 (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  csb 3097  {csn 3638  cop 3641   cuni 3856  cmpt 4113  ccnv 4682  Rel wrel 4688  1-1-ontowf1o 5279  cfv 5280  1st c1st 6237  2nd c2nd 6238  Fincfn 6840  cc 7943  cprod 11936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-proddc 11937
This theorem is referenced by:  fprodcom2fi  12012
  Copyright terms: Public domain W3C validator