| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nff1o | GIF version | ||
| Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| nff1o.1 | ⊢ Ⅎ𝑥𝐹 |
| nff1o.2 | ⊢ Ⅎ𝑥𝐴 |
| nff1o.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nff1o | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5324 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | nff1o.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff1o.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nff1o.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 2, 3, 4 | nff1 5528 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
| 6 | 2, 3, 4 | nffo 5546 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| 7 | 5, 6 | nfan 1611 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) |
| 8 | 1, 7 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 Ⅎwnf 1506 Ⅎwnfc 2359 –1-1→wf1 5314 –onto→wfo 5315 –1-1-onto→wf1o 5316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 |
| This theorem is referenced by: nfiso 5929 nfsum1 11862 nfsum 11863 nfcprod1 12060 nfcprod 12061 |
| Copyright terms: Public domain | W3C validator |