![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nff1o | GIF version |
Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nff1o.1 | ⊢ Ⅎ𝑥𝐹 |
nff1o.2 | ⊢ Ⅎ𝑥𝐴 |
nff1o.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nff1o | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 5261 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
2 | nff1o.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nff1o.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nff1o.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 2, 3, 4 | nff1 5457 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
6 | 2, 3, 4 | nffo 5475 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
7 | 5, 6 | nfan 1576 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) |
8 | 1, 7 | nfxfr 1485 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 Ⅎwnf 1471 Ⅎwnfc 2323 –1-1→wf1 5251 –onto→wfo 5252 –1-1-onto→wf1o 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 |
This theorem is referenced by: nfiso 5849 nfsum1 11499 nfsum 11500 nfcprod1 11697 nfcprod 11698 |
Copyright terms: Public domain | W3C validator |