ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff1o GIF version

Theorem nff1o 5372
Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1o.1 𝑥𝐹
nff1o.2 𝑥𝐴
nff1o.3 𝑥𝐵
Assertion
Ref Expression
nff1o 𝑥 𝐹:𝐴1-1-onto𝐵

Proof of Theorem nff1o
StepHypRef Expression
1 df-f1o 5137 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 nff1o.1 . . . 4 𝑥𝐹
3 nff1o.2 . . . 4 𝑥𝐴
4 nff1o.3 . . . 4 𝑥𝐵
52, 3, 4nff1 5333 . . 3 𝑥 𝐹:𝐴1-1𝐵
62, 3, 4nffo 5351 . . 3 𝑥 𝐹:𝐴onto𝐵
75, 6nfan 1545 . 2 𝑥(𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵)
81, 7nfxfr 1451 1 𝑥 𝐹:𝐴1-1-onto𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wnf 1437  wnfc 2269  1-1wf1 5127  ontowfo 5128  1-1-ontowf1o 5129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-sn 3537  df-pr 3538  df-op 3540  df-br 3937  df-opab 3997  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137
This theorem is referenced by:  nfiso  5714  nfsum1  11156  nfsum  11157  nfcprod1  11354  nfcprod  11355
  Copyright terms: Public domain W3C validator