| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nff1o | GIF version | ||
| Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.) | 
| Ref | Expression | 
|---|---|
| nff1o.1 | ⊢ Ⅎ𝑥𝐹 | 
| nff1o.2 | ⊢ Ⅎ𝑥𝐴 | 
| nff1o.3 | ⊢ Ⅎ𝑥𝐵 | 
| Ref | Expression | 
|---|---|
| nff1o | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-f1o 5265 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | nff1o.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff1o.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nff1o.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 2, 3, 4 | nff1 5461 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 | 
| 6 | 2, 3, 4 | nffo 5479 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 | 
| 7 | 5, 6 | nfan 1579 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) | 
| 8 | 1, 7 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 Ⅎwnf 1474 Ⅎwnfc 2326 –1-1→wf1 5255 –onto→wfo 5256 –1-1-onto→wf1o 5257 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 | 
| This theorem is referenced by: nfiso 5853 nfsum1 11521 nfsum 11522 nfcprod1 11719 nfcprod 11720 | 
| Copyright terms: Public domain | W3C validator |