| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fss | GIF version | ||
| Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fss | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3191 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → ran 𝐹 ⊆ 𝐶)) | |
| 2 | 1 | com12 30 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (ran 𝐹 ⊆ 𝐵 → ran 𝐹 ⊆ 𝐶)) |
| 3 | 2 | anim2d 337 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) |
| 4 | df-f 5263 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | df-f 5263 | . . 3 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4g 205 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶𝐶)) |
| 7 | 6 | impcom 125 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3157 ran crn 4665 Fn wfn 5254 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 |
| This theorem is referenced by: fssd 5423 fconst6g 5459 f1ss 5472 ffoss 5539 fsn2 5739 ofco 6158 tposf2 6335 issmo2 6356 smoiso 6369 mapsn 6758 ssdomg 6846 omp1eomlem 7169 1fv 10231 fxnn0nninf 10548 abscn2 11497 recn2 11499 imcn2 11500 climabs 11502 climre 11504 climim 11505 fsumre 11654 fsumim 11655 resmhm2 13190 prdsgrpd 13311 prdsinvgd 13312 ismet2 14674 dvfre 15030 dvrecap 15033 elplyr 15060 lgsfcl 15333 |
| Copyright terms: Public domain | W3C validator |