Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fss | GIF version |
Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fss | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3149 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → ran 𝐹 ⊆ 𝐶)) | |
2 | 1 | com12 30 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (ran 𝐹 ⊆ 𝐵 → ran 𝐹 ⊆ 𝐶)) |
3 | 2 | anim2d 335 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) |
4 | df-f 5192 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | df-f 5192 | . . 3 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
6 | 3, 4, 5 | 3imtr4g 204 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶𝐶)) |
7 | 6 | impcom 124 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ⊆ wss 3116 ran crn 4605 Fn wfn 5183 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-f 5192 |
This theorem is referenced by: fssd 5350 fconst6g 5386 f1ss 5399 ffoss 5464 fsn2 5659 ofco 6068 tposf2 6236 issmo2 6257 smoiso 6270 mapsn 6656 ssdomg 6744 omp1eomlem 7059 1fv 10074 fxnn0nninf 10373 abscn2 11256 recn2 11258 imcn2 11259 climabs 11261 climre 11263 climim 11264 fsumre 11413 fsumim 11414 ismet2 12994 dvfre 13314 dvrecap 13317 lgsfcl 13549 |
Copyright terms: Public domain | W3C validator |