ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fss GIF version

Theorem fss 5396
Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fss ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)

Proof of Theorem fss
StepHypRef Expression
1 sstr2 3177 . . . . 5 (ran 𝐹𝐵 → (𝐵𝐶 → ran 𝐹𝐶))
21com12 30 . . . 4 (𝐵𝐶 → (ran 𝐹𝐵 → ran 𝐹𝐶))
32anim2d 337 . . 3 (𝐵𝐶 → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶)))
4 df-f 5239 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
5 df-f 5239 . . 3 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
63, 4, 53imtr4g 205 . 2 (𝐵𝐶 → (𝐹:𝐴𝐵𝐹:𝐴𝐶))
76impcom 125 1 ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3144  ran crn 4645   Fn wfn 5230  wf 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157  df-f 5239
This theorem is referenced by:  fssd  5397  fconst6g  5433  f1ss  5446  ffoss  5512  fsn2  5710  ofco  6124  tposf2  6292  issmo2  6313  smoiso  6326  mapsn  6715  ssdomg  6803  omp1eomlem  7122  1fv  10168  fxnn0nninf  10468  abscn2  11354  recn2  11356  imcn2  11357  climabs  11359  climre  11361  climim  11362  fsumre  11511  fsumim  11512  resmhm2  12937  ismet2  14306  dvfre  14626  dvrecap  14629  lgsfcl  14862
  Copyright terms: Public domain W3C validator