| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fss | GIF version | ||
| Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fss | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3201 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → ran 𝐹 ⊆ 𝐶)) | |
| 2 | 1 | com12 30 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (ran 𝐹 ⊆ 𝐵 → ran 𝐹 ⊆ 𝐶)) |
| 3 | 2 | anim2d 337 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) |
| 4 | df-f 5280 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | df-f 5280 | . . 3 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4g 205 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶𝐶)) |
| 7 | 6 | impcom 125 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3167 ran crn 4680 Fn wfn 5271 ⟶wf 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 df-f 5280 |
| This theorem is referenced by: fssd 5444 fconst6g 5481 f1ss 5494 ffoss 5561 fsn2 5761 ofco 6184 tposf2 6361 issmo2 6382 smoiso 6395 mapsn 6784 ssdomg 6877 omp1eomlem 7203 1fv 10268 fxnn0nninf 10591 abscn2 11670 recn2 11672 imcn2 11673 climabs 11675 climre 11677 climim 11678 fsumre 11827 fsumim 11828 resmhm2 13364 prdsgrpd 13485 prdsinvgd 13486 ismet2 14870 dvfre 15226 dvrecap 15229 elplyr 15256 lgsfcl 15529 |
| Copyright terms: Public domain | W3C validator |