ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fss GIF version

Theorem fss 5443
Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fss ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)

Proof of Theorem fss
StepHypRef Expression
1 sstr2 3201 . . . . 5 (ran 𝐹𝐵 → (𝐵𝐶 → ran 𝐹𝐶))
21com12 30 . . . 4 (𝐵𝐶 → (ran 𝐹𝐵 → ran 𝐹𝐶))
32anim2d 337 . . 3 (𝐵𝐶 → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶)))
4 df-f 5280 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
5 df-f 5280 . . 3 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
63, 4, 53imtr4g 205 . 2 (𝐵𝐶 → (𝐹:𝐴𝐵𝐹:𝐴𝐶))
76impcom 125 1 ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3167  ran crn 4680   Fn wfn 5271  wf 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3173  df-ss 3180  df-f 5280
This theorem is referenced by:  fssd  5444  fconst6g  5481  f1ss  5494  ffoss  5561  fsn2  5761  ofco  6184  tposf2  6361  issmo2  6382  smoiso  6395  mapsn  6784  ssdomg  6877  omp1eomlem  7203  1fv  10268  fxnn0nninf  10591  abscn2  11670  recn2  11672  imcn2  11673  climabs  11675  climre  11677  climim  11678  fsumre  11827  fsumim  11828  resmhm2  13364  prdsgrpd  13485  prdsinvgd  13486  ismet2  14870  dvfre  15226  dvrecap  15229  elplyr  15256  lgsfcl  15529
  Copyright terms: Public domain W3C validator