| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fss | GIF version | ||
| Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fss | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3231 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → ran 𝐹 ⊆ 𝐶)) | |
| 2 | 1 | com12 30 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (ran 𝐹 ⊆ 𝐵 → ran 𝐹 ⊆ 𝐶)) |
| 3 | 2 | anim2d 337 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) |
| 4 | df-f 5322 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | df-f 5322 | . . 3 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4g 205 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶𝐶)) |
| 7 | 6 | impcom 125 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3197 ran crn 4720 Fn wfn 5313 ⟶wf 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 |
| This theorem is referenced by: fssd 5486 fconst6g 5526 f1ss 5539 ffoss 5606 fsn2 5811 ofco 6243 tposf2 6420 issmo2 6441 smoiso 6454 mapsn 6845 ssdomg 6938 omp1eomlem 7269 1fv 10343 fxnn0nninf 10669 abscn2 11834 recn2 11836 imcn2 11837 climabs 11839 climre 11841 climim 11842 fsumre 11991 fsumim 11992 resmhm2 13529 prdsgrpd 13650 prdsinvgd 13651 ismet2 15036 dvfre 15392 dvrecap 15395 elplyr 15422 lgsfcl 15695 |
| Copyright terms: Public domain | W3C validator |