| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fss | GIF version | ||
| Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fss | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3211 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → ran 𝐹 ⊆ 𝐶)) | |
| 2 | 1 | com12 30 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (ran 𝐹 ⊆ 𝐵 → ran 𝐹 ⊆ 𝐶)) |
| 3 | 2 | anim2d 337 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) |
| 4 | df-f 5298 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | df-f 5298 | . . 3 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4g 205 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶𝐶)) |
| 7 | 6 | impcom 125 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3177 ran crn 4697 Fn wfn 5289 ⟶wf 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 df-f 5298 |
| This theorem is referenced by: fssd 5462 fconst6g 5500 f1ss 5513 ffoss 5580 fsn2 5782 ofco 6207 tposf2 6384 issmo2 6405 smoiso 6418 mapsn 6807 ssdomg 6900 omp1eomlem 7229 1fv 10303 fxnn0nninf 10628 abscn2 11792 recn2 11794 imcn2 11795 climabs 11797 climre 11799 climim 11800 fsumre 11949 fsumim 11950 resmhm2 13487 prdsgrpd 13608 prdsinvgd 13609 ismet2 14993 dvfre 15349 dvrecap 15352 elplyr 15379 lgsfcl 15652 |
| Copyright terms: Public domain | W3C validator |