![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1sng | GIF version |
Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
f1sng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osng 5504 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}) | |
2 | f1of1 5462 | . . 3 ⊢ ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵}) | |
3 | 1, 2 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵}) |
4 | snssi 3738 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝐵} ⊆ 𝑊) | |
5 | 4 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐵} ⊆ 𝑊) |
6 | f1ss 5429 | . 2 ⊢ (({⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵} ∧ {𝐵} ⊆ 𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→𝑊) | |
7 | 3, 5, 6 | syl2anc 411 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→𝑊) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ⊆ wss 3131 {csn 3594 ⟨cop 3597 –1-1→wf1 5215 –1-1-onto→wf1o 5217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 |
This theorem is referenced by: fsnd 5506 |
Copyright terms: Public domain | W3C validator |