ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1sng GIF version

Theorem f1sng 5505
Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.)
Assertion
Ref Expression
f1sng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)

Proof of Theorem f1sng
StepHypRef Expression
1 f1osng 5504 . . 3 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
2 f1of1 5462 . . 3 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵})
31, 2syl 14 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵})
4 snssi 3738 . . 3 (𝐵𝑊 → {𝐵} ⊆ 𝑊)
54adantl 277 . 2 ((𝐴𝑉𝐵𝑊) → {𝐵} ⊆ 𝑊)
6 f1ss 5429 . 2 (({⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵} ∧ {𝐵} ⊆ 𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
73, 5, 6syl2anc 411 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wss 3131  {csn 3594  cop 3597  1-1wf1 5215  1-1-ontowf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225
This theorem is referenced by:  fsnd  5506
  Copyright terms: Public domain W3C validator