| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq23d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2207 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
| 2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 1, 2, 3 | feq123d 5423 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ⟶wf 5273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-fun 5279 df-fn 5280 df-f 5281 |
| This theorem is referenced by: intopsn 13249 mhmpropd 13348 grp1inv 13489 isrhm2d 13977 rhmopp 13988 |
| Copyright terms: Public domain | W3C validator |