ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssd GIF version

Theorem fssd 5432
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssd.f (𝜑𝐹:𝐴𝐵)
fssd.b (𝜑𝐵𝐶)
Assertion
Ref Expression
fssd (𝜑𝐹:𝐴𝐶)

Proof of Theorem fssd
StepHypRef Expression
1 fssd.f . 2 (𝜑𝐹:𝐴𝐵)
2 fssd.b . 2 (𝜑𝐵𝐶)
3 fss 5431 . 2 ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
41, 2, 3syl2anc 411 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3165  wf 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178  df-f 5272
This theorem is referenced by:  mapss  6768  ac6sfi  6977  fseq1p1m1  10198  seqf1oglem2  10646  sswrd  10978  resqrexlemcvg  11249  resqrexlemsqa  11254  climcvg1nlem  11579  fsumcl2lem  11628  nninfctlemfo  12280  ennnfonelemh  12694  gsumress  13145  gsumwsubmcl  13246  gsumfzsubmcl  13592  cnrest2  14626  cnptoprest2  14630  cncfss  14973  limccnpcntop  15065  dvidre  15087  dvcoapbr  15097  dvef  15117  plyaddlem  15139  plymullem  15140  plycjlemc  15150  plycn  15152  dvply2g  15156  isomninnlem  15833  trilpolemisumle  15841  iswomninnlem  15852  ismkvnnlem  15855
  Copyright terms: Public domain W3C validator