ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssd GIF version

Theorem fssd 5423
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssd.f (𝜑𝐹:𝐴𝐵)
fssd.b (𝜑𝐵𝐶)
Assertion
Ref Expression
fssd (𝜑𝐹:𝐴𝐶)

Proof of Theorem fssd
StepHypRef Expression
1 fssd.f . 2 (𝜑𝐹:𝐴𝐵)
2 fssd.b . 2 (𝜑𝐵𝐶)
3 fss 5422 . 2 ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
41, 2, 3syl2anc 411 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3157  wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-f 5263
This theorem is referenced by:  mapss  6759  ac6sfi  6968  fseq1p1m1  10188  seqf1oglem2  10631  sswrd  10963  resqrexlemcvg  11203  resqrexlemsqa  11208  climcvg1nlem  11533  fsumcl2lem  11582  nninfctlemfo  12234  ennnfonelemh  12648  gsumress  13099  gsumwsubmcl  13200  gsumfzsubmcl  13546  cnrest2  14580  cnptoprest2  14584  cncfss  14927  limccnpcntop  15019  dvidre  15041  dvcoapbr  15051  dvef  15071  plyaddlem  15093  plymullem  15094  plycjlemc  15104  plycn  15106  dvply2g  15110  isomninnlem  15787  trilpolemisumle  15795  iswomninnlem  15806  ismkvnnlem  15809
  Copyright terms: Public domain W3C validator