| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | GIF version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fssd.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| fssd | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fssd.b | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | fss 5436 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3165 ⟶wf 5266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-f 5274 |
| This theorem is referenced by: mapss 6777 ac6sfi 6994 fseq1p1m1 10215 seqf1oglem2 10663 sswrd 11001 resqrexlemcvg 11272 resqrexlemsqa 11277 climcvg1nlem 11602 fsumcl2lem 11651 nninfctlemfo 12303 ennnfonelemh 12717 gsumress 13169 gsumwsubmcl 13270 gsumfzsubmcl 13616 cnrest2 14650 cnptoprest2 14654 cncfss 14997 limccnpcntop 15089 dvidre 15111 dvcoapbr 15121 dvef 15141 plyaddlem 15163 plymullem 15164 plycjlemc 15174 plycn 15176 dvply2g 15180 isomninnlem 15902 trilpolemisumle 15910 iswomninnlem 15921 ismkvnnlem 15924 |
| Copyright terms: Public domain | W3C validator |