ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssd GIF version

Theorem fssd 5448
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssd.f (𝜑𝐹:𝐴𝐵)
fssd.b (𝜑𝐵𝐶)
Assertion
Ref Expression
fssd (𝜑𝐹:𝐴𝐶)

Proof of Theorem fssd
StepHypRef Expression
1 fssd.f . 2 (𝜑𝐹:𝐴𝐵)
2 fssd.b . 2 (𝜑𝐵𝐶)
3 fss 5447 . 2 ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
41, 2, 3syl2anc 411 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3170  wf 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183  df-f 5284
This theorem is referenced by:  mapss  6791  ac6sfi  7010  fseq1p1m1  10236  seqf1oglem2  10687  sswrd  11025  resqrexlemcvg  11405  resqrexlemsqa  11410  climcvg1nlem  11735  fsumcl2lem  11784  nninfctlemfo  12436  ennnfonelemh  12850  gsumress  13302  gsumwsubmcl  13403  gsumfzsubmcl  13749  cnrest2  14783  cnptoprest2  14787  cncfss  15130  limccnpcntop  15222  dvidre  15244  dvcoapbr  15254  dvef  15274  plyaddlem  15296  plymullem  15297  plycjlemc  15307  plycn  15309  dvply2g  15313  upgruhgr  15782  umgrupgr  15783  upgr1edc  15789  isomninnlem  16110  trilpolemisumle  16118  iswomninnlem  16129  ismkvnnlem  16132
  Copyright terms: Public domain W3C validator