| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | GIF version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fssd.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| fssd | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fssd.b | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | fss 5422 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 |
| This theorem is referenced by: mapss 6759 ac6sfi 6968 fseq1p1m1 10188 seqf1oglem2 10631 sswrd 10963 resqrexlemcvg 11203 resqrexlemsqa 11208 climcvg1nlem 11533 fsumcl2lem 11582 nninfctlemfo 12234 ennnfonelemh 12648 gsumress 13099 gsumwsubmcl 13200 gsumfzsubmcl 13546 cnrest2 14580 cnptoprest2 14584 cncfss 14927 limccnpcntop 15019 dvidre 15041 dvcoapbr 15051 dvef 15071 plyaddlem 15093 plymullem 15094 plycjlemc 15104 plycn 15106 dvply2g 15110 isomninnlem 15787 trilpolemisumle 15795 iswomninnlem 15806 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |