Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fssd | GIF version |
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fssd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fssd.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
fssd | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fssd.b | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | fss 5349 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3116 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-f 5192 |
This theorem is referenced by: mapss 6657 ac6sfi 6864 fseq1p1m1 10029 resqrexlemcvg 10961 resqrexlemsqa 10966 climcvg1nlem 11290 fsumcl2lem 11339 ennnfonelemh 12337 cnrest2 12876 cnptoprest2 12880 cncfss 13210 limccnpcntop 13284 dvcoapbr 13311 dvef 13328 isomninnlem 13909 trilpolemisumle 13917 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |