| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | GIF version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fssd.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| fssd | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fssd.b | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | fss 5484 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 ⟶wf 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5321 |
| This theorem is referenced by: mapss 6836 ac6sfi 7056 fseq1p1m1 10286 seqf1oglem2 10737 sswrd 11075 resqrexlemcvg 11525 resqrexlemsqa 11530 climcvg1nlem 11855 fsumcl2lem 11904 nninfctlemfo 12556 ennnfonelemh 12970 gsumress 13423 gsumwsubmcl 13524 gsumfzsubmcl 13870 cnrest2 14904 cnptoprest2 14908 cncfss 15251 limccnpcntop 15343 dvidre 15365 dvcoapbr 15375 dvef 15395 plyaddlem 15417 plymullem 15418 plycjlemc 15428 plycn 15430 dvply2g 15434 upgruhgr 15905 umgrupgr 15906 upgr1edc 15915 umgrislfupgrdom 15923 usgrislfuspgrdom 15982 isomninnlem 16357 trilpolemisumle 16365 iswomninnlem 16376 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |