| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | GIF version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fssd.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| fssd | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fssd.b | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | fss 5431 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3165 ⟶wf 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-f 5272 |
| This theorem is referenced by: mapss 6768 ac6sfi 6977 fseq1p1m1 10198 seqf1oglem2 10646 sswrd 10978 resqrexlemcvg 11249 resqrexlemsqa 11254 climcvg1nlem 11579 fsumcl2lem 11628 nninfctlemfo 12280 ennnfonelemh 12694 gsumress 13145 gsumwsubmcl 13246 gsumfzsubmcl 13592 cnrest2 14626 cnptoprest2 14630 cncfss 14973 limccnpcntop 15065 dvidre 15087 dvcoapbr 15097 dvef 15117 plyaddlem 15139 plymullem 15140 plycjlemc 15150 plycn 15152 dvply2g 15156 isomninnlem 15833 trilpolemisumle 15841 iswomninnlem 15852 ismkvnnlem 15855 |
| Copyright terms: Public domain | W3C validator |