| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | GIF version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fssd.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| fssd | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fssd.b | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | fss 5447 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3170 ⟶wf 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 df-f 5284 |
| This theorem is referenced by: mapss 6791 ac6sfi 7010 fseq1p1m1 10236 seqf1oglem2 10687 sswrd 11025 resqrexlemcvg 11405 resqrexlemsqa 11410 climcvg1nlem 11735 fsumcl2lem 11784 nninfctlemfo 12436 ennnfonelemh 12850 gsumress 13302 gsumwsubmcl 13403 gsumfzsubmcl 13749 cnrest2 14783 cnptoprest2 14787 cncfss 15130 limccnpcntop 15222 dvidre 15244 dvcoapbr 15254 dvef 15274 plyaddlem 15296 plymullem 15297 plycjlemc 15307 plycn 15309 dvply2g 15313 upgruhgr 15782 umgrupgr 15783 upgr1edc 15789 isomninnlem 16110 trilpolemisumle 16118 iswomninnlem 16129 ismkvnnlem 16132 |
| Copyright terms: Public domain | W3C validator |