![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sseqtrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 2 | sseq2d 3209 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶)) |
4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: sseqtrrd 3218 fssdmd 5417 resasplitss 5433 nnaword2 6567 erssxp 6610 phpm 6921 nninfninc 7182 nnnninfeq 7187 ioodisj 10059 subsubm 13055 subsubg 13267 trivsubgd 13270 trivnsgd 13287 subsubrng 13710 subrgugrp 13736 subsubrg 13741 islssmd 13855 lspun 13898 lspssp 13899 lsslsp 13925 tgcl 14232 basgen 14248 bastop1 14251 bastop2 14252 clsss2 14297 topssnei 14330 cnntr 14393 txbasval 14435 neitx 14436 cnmpt1res 14464 cnmpt2res 14465 imasnopn 14467 hmeontr 14481 tgioo 14714 reldvg 14833 dvfvalap 14835 dvbss 14839 dvcnp2cntop 14848 dvaddxxbr 14850 dvmulxxbr 14851 dvcj 14858 |
Copyright terms: Public domain | W3C validator |