| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sseqtrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | sseq2d 3254 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseqtrrd 3263 fssdmd 5486 resasplitss 5504 nnaword2 6658 erssxp 6701 phpm 7023 nninfninc 7286 nnnninfeq 7291 ioodisj 10185 subsubm 13511 subsubg 13729 trivsubgd 13732 trivnsgd 13749 subsubrng 14172 subrgugrp 14198 subsubrg 14203 islssmd 14317 lspun 14360 lspssp 14361 lsslsp 14387 tgcl 14732 basgen 14748 bastop1 14751 bastop2 14752 clsss2 14797 topssnei 14830 cnntr 14893 txbasval 14935 neitx 14936 cnmpt1res 14964 cnmpt2res 14965 imasnopn 14967 hmeontr 14981 tgioo 15222 reldvg 15347 dvfvalap 15349 dvbss 15353 dvcnp2cntop 15367 dvaddxxbr 15369 dvmulxxbr 15370 dvcj 15377 |
| Copyright terms: Public domain | W3C validator |