| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sseqtrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | sseq2d 3227 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: sseqtrrd 3236 fssdmd 5448 resasplitss 5466 nnaword2 6612 erssxp 6655 phpm 6976 nninfninc 7239 nnnninfeq 7244 ioodisj 10130 subsubm 13385 subsubg 13603 trivsubgd 13606 trivnsgd 13623 subsubrng 14046 subrgugrp 14072 subsubrg 14077 islssmd 14191 lspun 14234 lspssp 14235 lsslsp 14261 tgcl 14606 basgen 14622 bastop1 14625 bastop2 14626 clsss2 14671 topssnei 14704 cnntr 14767 txbasval 14809 neitx 14810 cnmpt1res 14838 cnmpt2res 14839 imasnopn 14841 hmeontr 14855 tgioo 15096 reldvg 15221 dvfvalap 15223 dvbss 15227 dvcnp2cntop 15241 dvaddxxbr 15243 dvmulxxbr 15244 dvcj 15251 |
| Copyright terms: Public domain | W3C validator |