| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sseqtrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | sseq2d 3214 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseqtrrd 3223 fssdmd 5424 resasplitss 5440 nnaword2 6581 erssxp 6624 phpm 6935 nninfninc 7198 nnnninfeq 7203 ioodisj 10087 subsubm 13187 subsubg 13405 trivsubgd 13408 trivnsgd 13425 subsubrng 13848 subrgugrp 13874 subsubrg 13879 islssmd 13993 lspun 14036 lspssp 14037 lsslsp 14063 tgcl 14408 basgen 14424 bastop1 14427 bastop2 14428 clsss2 14473 topssnei 14506 cnntr 14569 txbasval 14611 neitx 14612 cnmpt1res 14640 cnmpt2res 14641 imasnopn 14643 hmeontr 14657 tgioo 14898 reldvg 15023 dvfvalap 15025 dvbss 15029 dvcnp2cntop 15043 dvaddxxbr 15045 dvmulxxbr 15046 dvcj 15053 |
| Copyright terms: Public domain | W3C validator |