ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrd GIF version

Theorem sseqtrd 3130
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrd.1 (𝜑𝐴𝐵)
sseqtrd.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
sseqtrd (𝜑𝐴𝐶)

Proof of Theorem sseqtrd
StepHypRef Expression
1 sseqtrd.1 . 2 (𝜑𝐴𝐵)
2 sseqtrd.2 . . 3 (𝜑𝐵 = 𝐶)
32sseq2d 3122 . 2 (𝜑 → (𝐴𝐵𝐴𝐶))
41, 3mpbid 146 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wss 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-in 3072  df-ss 3079
This theorem is referenced by:  sseqtrrd  3131  fssdmd  5281  resasplitss  5297  nnaword2  6403  erssxp  6445  phpm  6752  ioodisj  9769  tgcl  12222  basgen  12238  bastop1  12241  bastop2  12242  clsss2  12287  topssnei  12320  cnntr  12383  txbasval  12425  neitx  12426  cnmpt1res  12454  cnmpt2res  12455  imasnopn  12457  hmeontr  12471  tgioo  12704  reldvg  12806  dvfvalap  12808  dvbss  12812  dvcnp2cntop  12821  dvaddxxbr  12823  dvmulxxbr  12824  dvcj  12831  nninfalllemn  13191
  Copyright terms: Public domain W3C validator