![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sseqtrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 2 | sseq2d 3210 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶)) |
4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: sseqtrrd 3219 fssdmd 5418 resasplitss 5434 nnaword2 6569 erssxp 6612 phpm 6923 nninfninc 7184 nnnninfeq 7189 ioodisj 10062 subsubm 13058 subsubg 13270 trivsubgd 13273 trivnsgd 13290 subsubrng 13713 subrgugrp 13739 subsubrg 13744 islssmd 13858 lspun 13901 lspssp 13902 lsslsp 13928 tgcl 14243 basgen 14259 bastop1 14262 bastop2 14263 clsss2 14308 topssnei 14341 cnntr 14404 txbasval 14446 neitx 14447 cnmpt1res 14475 cnmpt2res 14476 imasnopn 14478 hmeontr 14492 tgioo 14733 reldvg 14858 dvfvalap 14860 dvbss 14864 dvcnp2cntop 14878 dvaddxxbr 14880 dvmulxxbr 14881 dvcj 14888 |
Copyright terms: Public domain | W3C validator |